Asset Pricing Theory
Paris Dauphine University-PSL
Hamilton-Jacobi-Bellman Equations
Hamilton: William Rowan Hamilton (1805-1865), Irish mathematician and physicist, formulated the Hamiltonian mechanics framework.
Jacobi: Carl Gustav Jacob Jacobi (1804-1851), German mathematician, contributed to the development of the Hamiltonian formalism and the Hamilton-Jacobi equation.
Bellman: Richard Bellman (1920-1984), American mathematician, developed dynamic programming and the Bellman equation. His book “Dynamic Programming” (1957) laid the foundation for modern optimal control theory.
Idea behind HJB: Break down a dynamic optimization problem into smaller subproblems, solve each subproblem optimally, and use these solutions to construct the overall optimal solution.
The Dynamic Programming Principle (DPP) states that the value of an optimal control problem at any given time depends only on the current state and the optimal strategy from that point onward.
Assumptions:
State variables:
Controls:
General Case:
\[ dX_t = \mu(X_t, u_t) dt + \sigma(X_t, u_t) dW_t \]
where \(W_t\) is a standard Brownian motion (\(dW_t \sim N(0, dt)\)).
\[ \max_{u_t} E_t \left[ \int_t^\infty e^{-\rho (s-t)} U(X_s, u_s) ds \right] \]
Objective (infinite horizon, discounted):
\[ V(X_t,t)=\max_{u_s,\,s\ge t}\; \mathbb E_t\!\left[\int_t^\infty e^{-\rho (s-t)}\,U(X_s,u_s)\,ds\right],\qquad \rho>0. \]
Dynamic Programming Principle (DPP): for small \(dt>0\),
\[ V(X_t,t)=\max_{u_t}\left\{U(X_t,u_t)\,dt + e^{-\rho dt}\,\mathbb E_t\big[V(X_{t+dt},t+dt)\big]\right\}. \]
State dynamics (controlled Itô diffusion, 1D):
\[ dX_t=\mu(X_t,u_t,t)\,dt+\sigma(X_t,u_t,t)\,dW_t. \]
Discount factor: \(e^{-\rho dt}=1-\rho dt+o(dt)\).
Second-order Taylor–Itô expansion of \(V\) around \((X_t,t)\):
\[ \begin{aligned} V(X_{t+dt},t+dt) &\approx V(X_t,t)+V_t\,dt+V_x\,dX_t+\tfrac12 V_{xx}\,(dX_t)^2+o(dt). \end{aligned} \]
Itô moments:
\[ \mathbb E_t[dW_t]=0,\quad \mathbb E_t[(dW_t)^2]=dt,\quad \mathbb E_t[dX_t]=\mu\,dt,\quad \mathbb E_t[(dX_t)^2]=\sigma^2\,dt. \]
Plug \(dX_t\) into the expansion and take conditional expectation:
\[ \begin{aligned} \mathbb E_t\!\big[V(X_{t+dt},t+dt)\big] &= \mathbb E_t\!\Big[V + V_t\,dt + V_x\,dX_t + \tfrac12 V_{xx}(dX_t)^2\Big] + o(dt) \\ &= V + \Big(V_t + \mu V_x + \tfrac12 \sigma^2 V_{xx}\Big)\,dt + o(dt). \end{aligned} \]
Start from \[ V = \max_{u_t}\left\{U\,dt + e^{-\rho dt}\,\mathbb E_t[V(X_{t+dt},t+dt)]\right\}. \]
Insert the two expansions: \[ \begin{aligned} V &=\max_{u_t}\Big\{U\,dt + (1-\rho dt)\Big[V + \big(V_t+\mu V_x+\tfrac12\sigma^2 V_{xx}\big)\,dt\Big] + o(dt)\Big\}\\ &=\max_{u_t}\Big\{U\,dt + V + \big(V_t+\mu V_x+\tfrac12\sigma^2 V_{xx}\big)\,dt - \rho V\,dt + o(dt)\Big\} \\ \rho V &=\max_{u_t}\Big\{U + V_t+\mu V_x+\tfrac12\sigma^2 V_{xx} - \rho V + \frac{o(dt)}{dt}\Big\}. \end{aligned} \]
Letting \(dt\to0\) yields the HJB equation which is a Partial Differential Equation (PDE). \[ \rho V = \max_{u}\left\{U + V_t + \mu V_x + \tfrac12\sigma^2 V_{xx}\right\}. \]
The HJB equations captures the shape of the value function in the interior of the domain. To pin down a unique solution, we need to specify appropriate boundary/terminal conditions.
E.g. Finite horizon \([0,T]\) with terminal payoff \(G\):
\[ V(x,T)=G(x),\quad 0=\max_u\left\{U(x,u) + V_t + \mu V_x + \tfrac12\sigma^2 V_{xx} - \rho V\right\}\ \text{on } [0,T). \]
Exit/reflecting boundaries: specify appropriate boundary conditions at the domain ends (e.g., Dirichlet \(V=\phi\) or Neumann \(V_x=0\)) depending on the economics.
Hamiltonian (1D):
\[ \mathcal H(x,t,u;V,V_x,V_{xx})=U(x,u)+\mu(x,u,t)\,V_x+\tfrac12\,\sigma^2(x,u,t)\,V_{xx}. \]
Optimizer:
\[ u^*(x,t)\in \arg\max_{u\in\mathcal U}\ \mathcal H(x,t,u;V,V_x,V_{xx}). \]
Interior FOC (plus lagrangian in case of constrained control):
\[ \frac{\partial}{\partial u}\Big[U(x,u)+\mu(x,u,t)\,V_x+\tfrac12\,\sigma^2(x,u,t)\,V_{xx}\Big]\Big|_{u=u^*}=0, \]
Value function definition:
\[ V(W, t) = \max_{C_s, \omega_s} E_t\left[ \int_t^\infty e^{-\rho(s-t)} U(C_s) ds \right] \]
HJB equation derivation:
\[ \rho V(W,t) = \max_{C,\omega} \left\{ U(C) + \frac{\partial V}{\partial t} + \frac{\partial V}{\partial W} \mu_W + \frac{1}{2} \frac{\partial^2 V}{\partial W^2} \sigma_W^2 \right\} \]
where:
Final HJB equation: \(\rho V(W,t) = \max_{C,\omega} \left\{ U(C) + \frac{\partial V}{\partial t} + \frac{\partial V}{\partial W} [r W + \omega W (\mu - r) - C] + \frac{1}{2} \frac{\partial^2 V}{\partial W^2} W^2 \omega^2 \sigma^2 \right\}\)
Utility function:
\[ U(C) = \frac{C^{1-\gamma}}{1-\gamma}, \quad \gamma > 0, \gamma \neq 1 \] Key properties:
Guess for value function:
\[ V(W,t) = \frac{1}{1-\gamma} W^{1-\gamma} v(t) \]
Motivation: Homothetic preferences (scaling wealth scales utility proportionally) allow separation of wealth and time effects.
Substitute guess into HJB:
\[ \rho \cdot \frac{1}{1-\gamma} W^{1-\gamma} v(t) = \max_{C,\omega} \left\{ \frac{C^{1-\gamma}}{1-\gamma} + \frac{\partial V}{\partial t} + V_W [r W + \omega W (\mu - r) - C] + \frac{1}{2} V_{WW} W^2 \omega^2 \sigma^2 \right\} \]
Compute partial derivatives:
\[ \frac{\partial V}{\partial t} = \frac{1}{1-\gamma} W^{1-\gamma} v'(t) \] \[ \frac{\partial V}{\partial W} = W^{-\gamma} v(t) \] \[ \frac{\partial^2 V}{\partial W^2} = -\gamma W^{-\gamma-1} v(t) \]
Substitute derivatives:
\[ \rho \cdot \frac{1}{1-\gamma} v(t) W^{1-\gamma} = \max_{C,\omega} \left\{ \frac{C^{1-\gamma}}{1-\gamma} + \frac{1}{1-\gamma} W^{1-\gamma} v'(t) + W^{-\gamma} v(t) [r W + \omega W (\mu - r) - C] + \frac{1}{2} (-\gamma W^{-\gamma-1} v(t)) W^2 \omega^2 \sigma^2 \right\} \]
Divide both sides by \(\dfrac{W^{1-\gamma}}{1-\gamma}\) (i.e., multiply by \(\tfrac{1-\gamma}{W^{1-\gamma}}\)):
\[ \rho v(t) = \max_{C,\omega} \left\{ C^{1-\gamma} W^{-(1-\gamma)} + v'(t) + (1-\gamma) v(t) \big[ r + \omega (\mu - r) - C/W \big] - \tfrac{1}{2} \gamma (1-\gamma) v(t) \omega^2 \sigma^2 \right\} \]
First-order condition for consumption:
\[ \frac{\partial}{\partial C} \left[ C^{1-\gamma} W^{-(1-\gamma)} - (1-\gamma) v(t) \frac{C}{W} \right] = 0 \] \[ C^{-\gamma} W^{-(1-\gamma)} - v(t) W^{-1} = 0 \] \[ C^{-\gamma} = v(t) W^{-\gamma} \]
\[ \frac{C^*}{W} = v(t)^{-1/\gamma} \quad \Longrightarrow \quad C^* = W\, v(t)^{-1/\gamma} \]
First-order condition for portfolio:
\[ \frac{\partial}{\partial \omega} [v(t) \omega (\mu - r) - \frac{1}{2} \gamma v(t) \omega^2 \sigma^2] = 0 \] \[ v(t) (\mu - r) - \gamma v(t) \omega \sigma^2 = 0 \] \[ \omega^* = \frac{\mu - r}{\gamma \sigma^2} \]
Substitute optimal controls back into the normalized HJB and simplify:
\[ \rho v(t) = v'(t) + (1-\gamma) r \, v(t) + (1-\gamma) \, \frac{(\mu - r)^2}{2\,\gamma\,\sigma^2} \, v(t) + \gamma\, v(t)^{1 - 1/\gamma} \]
Simplify step by step:
\[ \begin{align*} v'(t) = \Big[ \rho - (1-\gamma) r - (1-\gamma) \tfrac{(\mu - r)^2}{2 \gamma \sigma^2} \Big] v(t) - \gamma\, v(t)^{1 - 1/\gamma} \end{align*} \]
Assume a stationary policy with consumption a constant fraction of wealth: \[ C_t = \kappa W_t,\qquad \kappa>0\ \text{constant}. \]
From the FOC obtained earlier, \(\dfrac{C_t^*}{W_t} = v(t)^{-1/\gamma} = y(t)^{-1}\). Stationarity therefore requires \(v(t)\equiv \bar v\) (equivalently \(y(t)\equiv \bar y\)) constant and \[ 0 = y'(t) = \frac{a}{\gamma}\,\bar y - 1 \quad\Longrightarrow\quad \bar y = \frac{\gamma}{a},\qquad \kappa = \frac{C_t^*}{W_t} = \bar y^{-1} = \frac{a}{\gamma}. \]
Small derivation and link to the FOC:
For \(\Delta>0\), \[ \begin{aligned} \mathbb{E}\Big[\int_t^\infty e^{-\rho(s-t)} U(C_s\times \Delta) ds \Big] &= \Delta^{1-\gamma} \mathbb{E}\Big[\int_t^\infty e^{-\rho(s-t)} U(C_s) ds \Big] \\ &= \Delta^{1-\gamma} V(W, t) \\ &= V(\Delta W,t) \end{aligned} \]
\[ \rho V(W) = \max_{C,\omega} \left\{ U(C) + \frac{\partial V}{\partial W} (\omega W (\mu - r) + W r - C) + \frac{1}{2} \frac{\partial^2 V}{\partial W^2} W^2 \omega^2 \sigma^2 \right\} \]
First Order Conditions
\[ \begin{aligned} U'(C) &= \frac{\partial V}{\partial W}\\ C^{-\gamma} = \frac{\partial V}{\partial W} \\ C = \Big(\frac{\partial V}{\partial W}\Big)^{-\frac{1}{\gamma}} \\ \end{aligned} \]
\[ \begin{aligned} \frac{\partial V}{\partial W} (W(\mu-r)) + \frac{\partial^2 V}{\partial W^2}(\omega W^2 \sigma^2) &= 0\\ \omega &= \frac{- \frac{\partial V}{\partial W} (W(\mu-r)) }{\frac{\partial^2 V}{\partial W^2} W^2 \sigma^2} \end{aligned} \]
From the FOCs \[ C=(V_W)^{-1/\gamma},\qquad \omega^*=-\,\frac{V_W\,W(\mu-r)}{V_{WW}\,W^2\sigma^2}=-\,\frac{\mu-r}{\sigma^2}\,\frac{V_W}{W V_{WW}}, \] plug back into the HJB: \[ \rho V(W) = \frac{(V_W)^{-\frac{1-\gamma}{\gamma}}}{1-\gamma} + V_W\big(\omega^* W(\mu-r)+Wr-C\big) + \tfrac12 V_{WW} W^2 (\omega^*)^2 \sigma^2. \]
Compute the \(\omega\)-parts:
\[ \omega^* W(\mu-r)=-\,\frac{V_W(\mu-r)^2}{V_{WW}\sigma^2},\qquad \tfrac12 V_{WW}W^2(\omega^*)^2\sigma^2=\frac12\,\frac{V_W^2(\mu-r)^2}{V_{WW}\sigma^2}. \] Hence \[ V_W\big(\omega^* W(\mu-r)\big)+\tfrac12 V_{WW}W^2(\omega^*)^2\sigma^2 = -\,\frac12\,\frac{(\mu-r)^2}{\sigma^2}\,\frac{V_W^2}{V_{WW}}. \]
Also \(C=(V_W)^{-1/\gamma}\) gives
\[ U(C)=\frac{(V_W)^{-\frac{1-\gamma}{\gamma}}}{1-\gamma},\qquad -\,V_W C = -(V_W)^{1-\frac1\gamma}. \]
Therefore, the HJB reduces to the following nonlinear second-order ODE in \(V\): \[ \begin{aligned} \rho V(W) &=\frac{(V_W)^{1-\frac{1}{\gamma}}}{1-\gamma} + r\,W\,V_W -(V_W)^{1-\frac1\gamma} -\frac{1}{2}\,\frac{(\mu-r)^2}{\sigma^2}\,\frac{V_W^{2}}{V_{WW}} \\ &=\Big[\frac{1}{1-\gamma}-1\Big](V_W)^{1-\frac{1}{\gamma}} + r\,W\,V_W -\frac{1}{2}\,\frac{(\mu-r)^2}{\sigma^2}\,\frac{V_W^{2}}{V_{WW}} \end{aligned} \]
What do we know about \(V\)?
\[ V(\Delta W) = \Delta^{1-\gamma} V(W) \]
Only a function of the form \(\kappa W^{1-\gamma}\) has that property. Define the guess
\[ V(W) = \frac{K}{1-\gamma} W^{1-\gamma} \]
The problem is scale-invariant (CRRA utility, linear wealth dynamics, no other state), so \(V(\lambda W)=\lambda^{\,1-\gamma}V(W)\). Hence \[ V(W)=\frac{K}{1-\gamma}\,W^{1-\gamma},\qquad K>0. \] Then \[ V_W=K\,W^{-\gamma},\qquad V_{WW}=-\gamma K\,W^{-\gamma-1}. \]
Plug into the ODE:
Divide by \(W^{1-\gamma}\) to obtain an algebraic equation for \(K\): \[ \rho\,\frac{K}{1-\gamma} =\frac{K^{-\frac{1-\gamma}{\gamma}}}{1-\gamma} +rK - K^{\frac{\gamma-1}{\gamma}} +\frac{1}{2}\frac{(\mu-r)^2}{\sigma^2}\,\frac{K}{\gamma}. \]
Let \(y:=K^{1/\gamma}\) (so \(K=y^\gamma\)). Using \(K^{-\frac{1-\gamma}{\gamma}}=y^{\gamma-1}\) and \(K^{\frac{\gamma-1}{\gamma}}=y^{\gamma-1}\), this collapses to \[ \rho\,y =\gamma+(1-\gamma)\,r\,y +\frac{1-\gamma}{2\gamma}\frac{(\mu-r)^2}{\sigma^2}\,y. \] Thus \[ \boxed{\; y=\frac{\gamma}{\rho-(1-\gamma)\!\left(r+\frac{(\mu-r)^2}{2\gamma\sigma^2}\right)} \;},\qquad K=y^\gamma. \]
Therefore the value function and policies are \[ \boxed{\; V(W)=\frac{W^{1-\gamma}}{1-\gamma}\left[\frac{\gamma}{\rho-(1-\gamma)\!\left(r+\frac{(\mu-r)^2}{2\gamma\sigma^2}\right)}\right]^{\!\gamma} \;} \]
Optimal controls: \[ \omega^*=\frac{\mu-r}{\gamma\sigma^2},\qquad \frac{C^*}{W}=(V_W)^{-1/\gamma}=y^{-1} =\frac{\rho-(1-\gamma)\!\left(r+\frac{(\mu-r)^2}{2\gamma\sigma^2}\right)}{\gamma}. \]
Utility function:
\[ U(C) = \ln C \]
Properties:
Guess for value function:
\[ V(W,t) = \ln W + u(t) \]
Substitute into HJB:
\[ \rho (\ln W + u(t)) = \max_{C,\omega} \left\{ \ln C + \frac{\partial V}{\partial t} + V_W [r W + \omega W (\mu - r) - C] + \frac{1}{2} V_{WW} W^2 \omega^2 \sigma^2 \right\} \]
Compute derivatives:
\[ \frac{\partial V}{\partial t} = u'(t), \frac{\partial V}{\partial W} = \frac{1}{W}, \frac{\partial^2 V}{\partial W^2} = -\frac{1}{W^2} \]
Substitute:
\[ \rho (\ln W + u(t)) = \max_{C,\omega} \left\{ \ln C + u'(t) + \frac{1}{W} [r W + \omega W (\mu - r) - C] - \frac{1}{2} \frac{1}{W^2} W^2 \omega^2 \sigma^2 \right\} \]
\[ \rho \ln W + \rho u(t) = \max_{C,\omega} \left\{ \ln C + u'(t) + r + \omega (\mu - r) - \frac{C}{W} - \frac{1}{2} \omega^2 \sigma^2 \right\} \]
First-order condition for consumption:
\[ \frac{\partial}{\partial C} [\ln C - \frac{C}{W}] = 0 \] \[ \frac{1}{C} - \frac{1}{W} = 0 \] \[ C^* = W \]
First-order condition for portfolio:
\[ \frac{\partial}{\partial \omega} [\omega (\mu - r) - \frac{1}{2} \omega^2 \sigma^2] = 0 \] \[ (\mu - r) - \omega \sigma^2 = 0 \] \[ \omega^* = \frac{\mu - r}{\sigma^2} \]
Substitute back:
\[ \rho \ln W + \rho u(t) = \ln W + u'(t) + r + \frac{\mu - r}{\sigma^2} (\mu - r) - 1 - \frac{1}{2} \left( \frac{\mu - r}{\sigma^2} \right)^2 \sigma^2 \]
\[ \rho \ln W + \rho u(t) = \ln W + u'(t) + r + \frac{(\mu - r)^2}{\sigma^2} - 1 - \frac{(\mu - r)^2}{2 \sigma^2} \]
\[ \rho \ln W + \rho u(t) = \ln W + u'(t) + r + \frac{(\mu - r)^2}{2 \sigma^2} - 1 \]
Collect constant terms:
\[ \rho u(t) = u'(t) + r - 1 + \frac{(\mu - r)^2}{2 \sigma^2} \]
ODE for \(u(t)\):
\[ u'(t) = \rho u(t) - r + 1 - \frac{(\mu - r)^2}{2 \sigma^2} \]
Solution:
This is a linear ODE of the form
\[ u'(t) = \rho u(t) + c, \]
which has the general solution
\[ u(t) = K e^{\rho t} - \frac{c}{\rho}, \]
where \(K\) is a constant determined by boundary conditions.
Asset Pricing Theory - Dynamic Asset Pricing Models