
Lesson 3: GMM Estimation
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Some sources used in the slides

Whited T. and Taylor L. Summer School in Structural Estimation.

Wooldridge, J. M. (2001). Econometric analysis of cross section and panel data.

Asset Pricing, Cochrane J. 2006.
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Introduction

GMM stands for Generalized Method of Moments. It is a generalization of the method

of moments estimator.

It was formalized by Hansen (1982), and since has become one of the most widely

used methods of estimation for models in economics and finance.

It is the basis for methods like the Simulated Method of Moments (SMM) and the
Indirect Inference (II) estimator.

The power of GMM is that it allows us to estimate models without having to specify
the distribution of the data.
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The method of moments estimator (Chebyshev)

It was introduced by Pafnuty Chebyshev in 1887 in the proof of the central limit

theorem.

Suppose you need to estimate  unknown parameters  that characterize
the distribution of a random variable .

Now, assume that the first  moments can be expressed as a function of the parameters:
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The method of moments (cont.)

Estimate the population moment with the sample moment

Solve the system of equations
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Example, normal distribution

After observing a sample of  observations , we can estimate the

population moments with the sample moments

And solve numerically the system of equations. 6



GMM

When the number of moments is equal to the number of parameters there is a unique

solution to the system of equations.

However, we cannot compute the standard errors of the estimates. For this task we
need to use the GMM estimator, and include more moments.
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GMM (cont.)

Notation in Wooldride

 is a ( ) i.i.d. vector of random variables for observation .

 is a ( ) vector of unknown coefficients (parameters).

 is a ( ) vector of functions 

Function  can be potentially non linear.

Let  be the true value of .

Let  be an estimator of .

The hat and naught notation is used to denote estimators and true values,
respectively.
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Moment Restrictions

GMM is based on the idea that the moment restrictions should be zero in expectation
(e.g. the difference between the sample and population moments).

Which in the sample can be written as

We want to choose  such that  is as close to zero as possible.
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Criterion Function

If we have more moments than parameters there might not be a solution to the system
of equations, but we can make those moments as close to zero as possible.

Hint, minimize a weighted sum of squared moments.

How much importance you give to each moment will be discussed later.

The estimator  uses the following function (criterion) as a function to minimize.

where  is a positive definite weighting matrix that converges in probbaility to .
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Asymptotic Properties

Hansen (1982) Large Sample Properties of Generalized Method of Moments,

Econometrica. Two-stage procedure, for any positive semidefined matrix  e.g. .

First Order Condition

This estimator is consistent and asymptotically normal but not always efficient, the

efficient estimator is obtained by estimating  as the inverse of covariance of moments

 and re-estimate.

11



Standard Errors

Hansen proved that the estimator

where  is the sample covariance of the moments given , is consistent and
asymptotically normal. Define

Then the asymptotic variance of  is
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Probability Concepts for GMM

CLT, HAC, and Probability Limits
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Central Limit Theorem (CLT)

Key result: For i.i.d. data with  and , as :

General CLT: For dependent data (e.g., time series), if  is stationary and weakly
dependent:

where  is the long-run variance.

Critical for deriving asymptotic distributions in GMM.
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Heteroskedasticity and Autocorrelation (HAC)

Problem: In time series/finance data, moments often exhibit:
Heteroskedasticity (varying variance)

Autocorrelation ( )

HAC estimator: Newey-West (1987) kernel estimator:

where .

Truncation parameter:  (e.g., ).

Ensures  consistently estimates  for GMM standard errors.
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Probability Limit (plim)

Definition:  if:

Key properties:
i. plim of sample mean: 

ii. Slutsky’s theorem: If  and  is continuous,

Critical for GMM: Weighting matrix , and consistency of .
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Formal Derivation of GMM

Based on Hansen (1982)
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Moment Conditions

Population moments: True parameter  satisfies:

where  is a  vector of moment conditions.

Sample analog (average over  observations):
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GMM Objective Function

Weighting matrix: Choose  (positive definite, ).

Quadratic form to minimize:
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First-Order Condition (FOC)

Derivative of  w.r.t.  (a  vector):

where  (  Jacobian).

FOC defines the estimator :
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Asymptotic Distribution

Taylor expansion of  around :

Substitute into FOC:
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Asymptotic Distribution (Cont.)

Rearrange for  (as ):

where .
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Central Limit Theorem (CLT)

Under regularity conditions:

where  (long-run variance).
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Asymptotic Variance

Combine CLT with expansion:

Recall the plim (probability limit) operator measures convergence in probability.
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Efficient GMM

Optimal weighting matrix:  minimizes asymptotic variance.

Asymptotic variance becomes:
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Standard Errors (Detailed)

Estimated asymptotic variance:

: HAC estimator (e.g., Newey-West)

 for efficient GMM

Standard errors: Square roots of diagonal elements divided by .
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Two-Step GMM Procedure

1. First step: Estimate  using  (identity matrix).

2. Compute residuals:  to estimate .

3. Second step: Re-estimate  using .
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Overidentification Test (J-Test)

Test statistic:

Tests whether all moments are jointly zero.

Degrees of freedom: .

28



Goodness of Fit

The GMM criterion function can be used to test the null hypothesis that the model is

correctly specified.

The test statistic is
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Example, OLS using GMM

Consider the simple linear regression model

The OLS conditions are

Replace
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Example, OLS using GMM (cont.)

Then the GMM estimator in the first step is
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Example, OLS using GMM (cont.)

Second step, given  compute the covariance matrix of the moments

Then the GMM estimator is

with covariance matrix
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GMM in practice

In many applications, the covariance matrix of the moments is numerically singular.

How to solve it?

i. Use only 1 step.

ii. Add small noise to the variance matrix.

iii. Use a "generalized" inverse.
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