Lesson 3: GMM Estimation



Some sources used in the slides

o Whited T. and Taylor L. Summer School in Structural Estimation.
o Wooldridge, J. M. (2001). Econometric analysis of cross section and panel data.
e Asset Pricing, Cochrane J. 2006.



Introduction

o GMM stands for Generalized Method of Moments. It is a generalization of the method
of moments estimator.

e |t was formalized by Hansen (1982), and since has become one of the most widely
used methods of estimation for models in economics and finance.

e |tisthe basis for methods like the Simulated Method of Moments (SMM) and the
Indirect Inference (Il) estimator.

o The power of GMM is that it allows us to estimate models without having to specify
the distribution of the data.



The method of moments estimator (Chebyshev)

e [t was introduced by Pafnuty Chebyshev in 1887 in the proof of the central limit
theorem.

e Suppose you need to estimate k unknown parameters 61, . . ., 0y that characterize
the distribution of a random variable X.

fx(z;04,...,0;)
Now, assume that the first kK moments can be expressed as a function of the parameters:
p1 = EX] =g1(04,...,0%)
pe = E[X?] = g2(64,...,60)

pr = BIX*] = gir(61,.. ., 0)



The method of moments (cont.)

o Estimate the population moment with the sample moment



Example, normal distribution

p = E[X]| = / zfx(z;p,0)de =

©.9)

s = B[X?) = / " 2 fx(a; py0)da

©.@)

o After observing a sample of n observations {x1, ..., Z, }, we can estimate the
population moments with the sample moments

ﬂlZ%;iBi

1 n
~A 2
H2 = = E T;
1=1

e And solve numerically the system of equations.



GMM

e \When the number of moments is equal to the number of parameters there is a unique
solution to the system of equations.

e However, we cannot compute the standard errors of the estimates. For this task we
need to use the GMM estimator, and include more moments.



GMM (cont.)

e Notation in Wooldride

e w;isa (M x 1)i.id.vector of random variables for observation z.

e fisa (P x 1) vector of unknown coefficients (parameters).

e g(w;,0)isa (L x 1)vectorof functions g : RM x RY — REL > P
e Function g can be potentially non linear.

o Let 6 be the true value of 6.

e Let 6 be an estimator of 6.

e The hat and naught notation is used to denote estimators and true values,
respectively.



Moment Restrictions

e GMM is based on the idea that the moment restrictions should be zero in expectation
(e.g. the difference between the sample and population moments).

Elg(w;, 6y)] = 0

Which in the sample can be written as

1 N

1=1

We want to choose 6 such that N ~? SV g(ws, f) is as close to zero as possible.



Criterion Function

e |f we have more moments than parameters there might not be a solution to the system
of equations, but we can make those moments as close to zero as possible.

o Hint, minimize a weighted sum of squared moments.

How much importance you give to each moment will be discussed later.

The estimator é uses the following function (criterion) as a function to minimize.

Qn(6) = [N jv; g(w,0)] W N f; g(w:,6)]

where W is a positive definite weighting matrix that converges in probbaility to W),.
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Asymptotic Properties

Hansen (1982) Large Sample Properties of Generalized Method of Moments,
Econometrica. Two-stage procedure, for any positive semidefined matrix W e.g. 1.

0 = arg m@in [gT(H)} ,W[gT(H)}

First Order Condition

Ogr(0)
06

This estimator is consistent and asymptotically normal but not always efficient, the

Wgr(0) = agr() =0

efficient estimator is obtained by estimating W as the inverse of covariance of moments

gT(él) and re-estimate.

11



Standard Errors

Hansen proved that the estimator

N

0, = arg mgn [gT(H)} St [gT(H)]

where S’ is the sample covariance of the moments given él, is consistent and
asymptotically normal. Define

_ 9gr(0)

d 00

Then the asymptotic variance of §2 IS

V(6y) = %[d'é—ld] o
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Probability Concepts for GMM

CLT, HAC, and Probability Limits
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Central Limit Theorem (CLT)

o Key result: For i.i.d. data with E'|g;| = 0 and Var(g;) = ¥,as T' — o0:
d 1 &
VTgr — N(0,%), where jr = — ; g

e General CLT: For dependent data (e.g., time series), if g; is stationary and weakly
dependent:

d 0.
VT gr — N(0,8), S= Z Elg:g; .|

j=—00
where S is the long-run variance.

e Critical for deriving asymptotic distributions in GMM.
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Heteroskedasticity and Autocorrelation (HAC)

Problem: In time series/finance data, moments often exhibit:
o Heteroskedasticity (varying variance)

o Autocorrelation (E|g;g; ;| # 0)

HAC estimator: Newey-West (1987) kernel estimator:

a ~ . J < -
S=Iy+ (1— )(I‘j+I‘-)
jzl m+ 1 J

<~ | T /
where I = 7 gigl;

Truncation parameter: m (e.g., m = |4(T/100)2/9 ).

e Ensures S’ consistently estimates S for GMM standard errors.
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Probability Limit (plim)
 Definition: éT i 0, if:
Ve >0, lim P(||fr — 6| > €) =0
T— 00
o Key properties:

i. plim of sample mean: plim % Zthl gt = E[Qt]

ii. Slutsky's theorem: If plimé — @y and h is continuous,

A

plim h(0) = h(6y)

p A
e Critical for GMM: Weighting matrix W — W, and consistency of 6.
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Formal Derivation of GMM

Based on Hansen (1982)
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Moment Conditions

e Population moments: True parameter 0 satisfies:
Elg:(6o)] = 0

where g;(0) isam x 1 vector of moment conditions.

e Sample analog (average over 1" observations):
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GMM Objective Function

o Weighting matrix: Choose W (positive definite, m X m).

e Quadratic form to minimize:

Qr(0) = g7(0) Wrgr(6)
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First-Order Condition (FOC)

o Derivative of Q7(0) w.rt.0 (ap x 1 vector):

0
0T 9G1(0) Wrgr(6) = 0
where Gr(0) = + S 895—&") (m X p Jacobian).

e FOC defines the estimator é:

Gr(0) Wrgr(8) =0
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Asymptotic Distribution

A

o Taylor expansion of g () around 6

QT(é) ~ gr(6o) + GT(HO)(é — 6o)
e Substitute into FOC:

A

Gr(0)'Wr |97(60) + Gr(80)(8 — 60)]

0
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Asymptotic Distribution (Cont.)

e Rearrange for 0 (asT' — o0):
VT(0 - 0,) ~ —(GEWrGr) " GpWrVTgr(8)

where Gy = F {agg_(go)].
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Central Limit Theorem (CLT)

o Under regularity conditions:

VT gr(8) < N(0, S)
where S = limp_.., Var (\/TgT(HO)) (long-run variance).
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Asymptotic Variance

e Combine CLT with expansion:
VT (6 - 80) 5 N (0, (G'WG)'G'WSWG(G'WG)™)
_ 9g:(6o)
o-z[ag
o W = plim Wr

o Recall the plim (probability limit) operator measures convergence in probability.
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Efficient GMM

e Optimal weighting matrix: W = S ! minimizes asymptotic variance.

o Asymptotic variance becomes:

Avar(d) = (G'S7'G)
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Standard Errors (Detailed)

o Estimated asymptotic variance:

—— A

Rvar(6) — %(@W@) CaWswa(awa

0
G=+37, 2

o S: HAC estimator (e.g., Newey-West)
o W = g_l for efficient GMM

e Standard errors: Square roots of diagonal elements divided by 7'
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Two-Step GMM Procedure

1. First step: Estimate é(l) using Wr = I (identity matrix).

2. Compute residuals: g;(6)) to estimate S.

3. Second step: Re-estimate 0 using Wp = S—1
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Overidentification Test (J-Test)

e Test statistic:

J=T-Qp() S 52

m—p
o Tests whether all moments are jointly zero.

o Degrees of freedom: ##moments — #parameters.
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Goodness of Fit

e The GMM criterion function can be used to test the null hypothesis that the model is
correctly specified.

e The test statistic is

O

TQr(

) = XI_p
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Example, OLS using GMM

e Consider the simple linear regression model

y=XB+e
The OLS conditions are
E[X'e] =0
Ele] =0
Replace
/
g9(w;, 0) = [X;ez
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Example, OLS using GMM (cont.)

Then the GMM estimator in the first step is

Elzargmm[ 12 X:Z“ [ 1Z[X,€Z]
:argmm{ 12 o XXﬁ)ﬂﬂ I 12Nj[ " 25)5)“

(Y — i




Example, OLS using GMM (cont.)

Second step, given 31 compute the covariance matrix of the moments

_ e N A
1 EN: Xi(yi — XiB1) | | X;(yi — X;B1)
N

S = ) )
i-1 | (¥ — X5B1) L (v — XifB1)

Then the GMM estimator is

B> = argmin [N 12_: [ B)ﬁ)“ SN _1§N: [X{( ._XXﬁ.)ﬁ)“

~ | (yi

with covariance matrix



GMM in practice

e |[n many applications, the covariance matrix of the moments is numerically singular.

e How to solve it?
I. Use only 1 step.

ii. Add small noise to the variance matrix.

iii. Use a "generalized" inverse.
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