Problem Set 2

Empirical Asset Pricing

M2 104

Paris Dauphine - PSL

The problem set together with the code needs to be emailed to juan.imbet@dauphine.psl.eu before February 252024 23:59. You can solve the problem sets in groups of maximum 3 people.

Setup

Consider the following factor model with 5 assets and 2 factors with the appropriate dimensions of the parameters:

with $\epsilon_{t} \sim \mathrm{~N}(0, \Sigma)$, where Σ is a non-diagonal covariance matrix. And $f_{t} \sim \mathrm{~N}\left(\mu_{f}, \Sigma_{f}\right)$, where Σ_{f} is the covariance matrix of the factor realizations, and μ_{f} is the expected value of the factor returns.
the true values of the parameters are:

$$
a=\left(\begin{array}{l}
0.0 \\
0.0 \\
0.0 \\
0.0 \\
0.0
\end{array}\right), \quad \beta=\left(\begin{array}{ll}
0.5 & 0.0 \\
0.0 & 0.5 \\
0.5 & 0.5 \\
0.3 & 1.2 \\
0.7 & 0.4
\end{array}\right), \quad \Sigma=\left(\begin{array}{ccccc}
1.0 & 0.5 & 0.5 & 0.5 & 0.5 \\
0.5 & 1.0 & 0.5 & 0.0 & 0.0 \\
0.5 & 0.5 & 1.0 & 0.0 & 0.0 \\
0.5 & 0.0 & 0.0 & 1.0 & 0.5 \\
0.5 & 0.0 & 0.0 & 0.5 & 1.0
\end{array}\right)
$$

and

$$
\mu_{f}=\binom{0.05}{0.07}, \quad \Sigma_{f}=\left(\begin{array}{ll}
1.0 & 0.5 \\
0.5 & 1.0
\end{array}\right)
$$

Question 1 (4 points)

Create a function that given a time horizon T simulates the dynamics of the system above. The function should return both time series R_{t}^{e} and f_{t}.

Question 2 (4 points)

Create a function that given simulated data R_{t}^{e} estimates using OLS and GLS the parameters $\hat{\alpha}$ and $\hat{\lambda}$ (together with their standard errors) in the following model (assume that you only know the true values of $\Sigma_{,} \Sigma_{f}$ and β so you dont need to estimate them):

$$
E_{T}\left[R_{t}^{e}\right]=\alpha+\beta \lambda
$$

Question 3 (4 points)

For a given $T=10$ repeat the above exercise 1000 times and plot the distribution of the estimated parameters $\hat{\alpha}$ and $\hat{\lambda}$ (together with the true values). What do you observe? The true values of α are a and the true values of λ are μ_{f}.

Question 4 (4 points)

Repeat the above exercise, but for each estimated parameter consider the distribution of the ratio

$$
\frac{\hat{\theta}-\theta}{\text { s.e. }(\hat{\theta})}
$$

can you find any difference in the distribution of the ratios between OLS and GLS? Hint: look at the tails of the distribution. Comment on the results.

Question 5 (4 points)

Assume now that you do not know the true values of β, Σ and Σ_{f}. For a fixed $T=10$ and 1000 simulations, compare the expected value of your estimators. Does estimation error affect the expected value of $\hat{\alpha}$ and $\hat{\lambda}$? Comment on the results.

