
Intermediate Python for Finance Professionals

Juan F. Imbet Ph.D.

Paris Dauphine University

Python for Finance

Juan F. Imbet Ph.D. 1

About the course
Final Exam: 100%

Python for Finance

Juan F. Imbet Ph.D. 2

Week 1

Introduction to Python, grammar, syntaxis, history,
binary arithmetic, good-practices, basic data-
structures.

Python for Finance

Juan F. Imbet Ph.D. 3

What is Python?
Python is a programming language that has been around for a while. However, only
recently it has become popular for data science and machine learning applications.

Python is a:

1. General purpose programming language

2. Interpreted language
3. Object-oriented language

4. High-level language

5. Dynamically typed language

Python for Finance

Juan F. Imbet Ph.D. 4

General purpose programming language
Python can be used for many different things. For example, you can use Python to build
websites, create games, build machine learning models, analyze data, and more.

For example

1. Web development using Django and Flask
2. Machine learning using Scikit-Learn, TensorFlow, and Keras

3. Data science using Pandas, NumPy, and SciPy

4. Game development using Pygame

5. Algorithmic trading using Zipline and Quantopian
6. AI applications using OpenAI's API

Python for Finance

Juan F. Imbet Ph.D. 5

Interpreted language
Python is an interpreted language, meaning that it is not directly translated into
machine code. Instead, Python code is interpreted into Python bytecode, which is then
interpreted (at runtime) into machine code.

Comparison to other programming languages

1. C++ is a compiled language

2. Java is a compiled language

3. Python is an interpreted language
4. JavaScript is an interpreted language

Python for Finance

Juan F. Imbet Ph.D. 6

Object-oriented language
Python is an object-oriented language, which means that it provides features that
support object-oriented programming (OOP). OOP is a programming paradigm
that focuses on objects and data rather than actions and logic. For example, a car
can be an object with properties like color, model, and mileage, and methods like
drive and brake.

Comparison to other programming paradigms

1. Procedural programming is a programming paradigm that focuses on actions and
logic rather than objects and data. For example languages like C and Fortran are
procedural languages.

2. Functional programming is a programming paradigm that focuses on functions
rather than objects and data. For example, languages like Haskell and Scala are
functional languages.

Python for Finance

Juan F. Imbet Ph.D. 7

High-level language
Comparison to other programming languages

1. Low-level languages are closer to machine languages than human languages. For
example, assembly language is a low-level language.

2. High-level languages are closer to human languages than machine languages. For
example, C++ is a high-level languages.

Python for Finance

Juan F. Imbet Ph.D. 8

Dynamic vs Static Typing
Python is a dynamically typed language, meaning that variables do not have to be
declared before they are used. The type of a variable determines how much memory is
allocated for it, and what operations can be performed on it.

Comparison to other programming languages

1. Dynamically typed languages like Python and JavaScript do not require variables
to be declared before they are used.

2. Statically typed languages like C++ and Java require variables to be declared
before they are used.

Python for Finance

Juan F. Imbet Ph.D. 9

Dynamic vs Static Typing
Static typing example, e.g. C++

int x = 1;
int y = 2;
double z = x / y;
char c = 'a';

Dynamic typing example, e.g. Python

x = 1
y = 2
z = x / y
c = 'a'

Python for Finance

Juan F. Imbet Ph.D. 10

Python syntax
Python syntax is very clean, simple, and easy to understand. This is one of the reasons
why Python is so popular for beginners.

Some unique features of Python syntax

1. Indentation is used to delimit blocks rather than curly braces
2. No semicolons are required to end statements

3. No variable declarations are required

Python for Finance

Juan F. Imbet Ph.D. 11

Example of the Python syntax
This is a comment
x = 1
y = 2
if x < y:
 print('x is less than y')
else:
 print('x is greater than or equal to y')

Python for Finance

Juan F. Imbet Ph.D. 12

SETTING UP YOUR ENVIRONMENT

Python for Finance

Juan F. Imbet Ph.D. 13

Installing Python
There are two main versions of Python: Python 2 and Python 3. Python 2 is legacy,
Python 3 is the current version. This course will use Python 3.

Installing Python

1. Windows - Anaconda

2. Mac - Anaconda

3. Linux - Anaconda

4. Online - Google Colab

Python for Finance

Juan F. Imbet Ph.D. 14

https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://www.anaconda.com/download/
https://colab.research.google.com/

Installing an IDE
An IDE (Integrated Development Environment) is a program that provides an editor,
debugger, and compiler all in one. There are many different IDEs for Python, and it is
important to choose one that you like. This course will use VS Code, but feel free to
explore other options.

Installing VS Code

1. Windows - VS Code

2. Mac - VS Code

3. Linux - VS Code

Python for Finance

Juan F. Imbet Ph.D. 15

https://code.visualstudio.com/download
https://code.visualstudio.com/download
https://code.visualstudio.com/download

Some useful extensions on VS Code
Jupyter

Python

Python for Finance

Juan F. Imbet Ph.D. 16

Preliminaries

Computer Architecture and Programming Languages

Python for Finance

Juan F. Imbet Ph.D. 17

How do Computers Work?
A computer is a machine that can be programmed to accept data (input), process it into
useful information (output), and store it away (in a secondary storage device) for
safekeeping or later reuse. The processing of input to output is directed by the software
but performed by the hardware.

Python for Finance

Juan F. Imbet Ph.D. 18

Computers think in binary
Computers are made of billions of tiny electronic components, which all work together
to perform calculations. These components are called transistors. Transistors are made
of semiconductors, which can be turned on and off by electricity. This is the basis of the
binary system, which uses only two numbers (0 and 1) to represent all other numbers.

Python for Finance

Juan F. Imbet Ph.D. 19

Binary numbers
Binary numbers are base 2 numbers, and have only two values – 0 and 1. The binary
number system is a positional notation with a radix of 2. Each digit is referred to as a
bit. The binary number system is also a positional notation numbering system, meaning
that the position of the bit determines its value.

Formula for converting binary to decimal

where is the th digit of the binary number and is the number of digits in the
binary number. E.g.

Python for Finance

Juan F. Imbet Ph.D. 20

Binary code
Binary code is the language that computers use. It is made up of binary numbers (0s
and 1s) that represent commands or other types of data. Different types of binary code
can be used to represent text, images, audio, or other types of data.

Example: Substring of a long binary code adding two numbers
0101 1000 0000 0011 0000 0000 0000 0010

Binary code depends on the hardware of the computer. For example, the same binary
code can represent different things on different computers.

Python for Finance

Juan F. Imbet Ph.D. 21

Who has the time to write binary code?
Binary code is very difficult to write and understand. For this reason, programming
languages were invented. The first programming language that assembled code into
binary was Assembly in 1949.

Example of Assembly code:

MOV AX, 5
MOV BX, 10
ADD AX, BX

Python for Finance

Juan F. Imbet Ph.D. 22

Who has the time to write Assembly code?
Assembly code is still very difficult to write and understand. For this reason,
programming languages were invented. The first programming language that compiled
code into binary was FORTRAN in 1957.

Example of FORTRAN code:

PROGRAM ADD
 INTEGER A, B, C
 A = 5
 B = 10
 C = A + B
END PROGRAM ADD

Python for Finance

Juan F. Imbet Ph.D. 23

How is Python ran?
Python is an interpreted language, meaning that it is not directly translated into
machine code. Instead, Python code is interpreted into Python bytecode, which is then
interpreted (at runtime) into machine code.

Python bytecode is stored in files with the extension .pyc . These files are created by
the Python interpreter when a .py file is imported. The bytecode is then executed by
the Python virtual machine (PVM).

The PVM is a program that reads Python bytecode and executes it on the hardware.
The PVM is written in C, which is a compiled language.

Python for Finance

Juan F. Imbet Ph.D. 24

In what language is Python written?
Python is written in C, and some libraries are written in Python itself. This is why some C
libraries can be used in Python.

C code

#include <stdio.h>
int main() {
 printf("Hello, World!");
 return 0;
}

Python code

print("Hello, World!")

Python for Finance

Juan F. Imbet Ph.D. 25

Running Python code
In VS Code using the Python extension running cells. Install the python and jupyter
extensions.

In VS Code

Run Cell | Run Below | Debug Cell
#%%
print("Hello, World!")

In the terminal using the command python <filename> .

hello.py
print("Hello, World!")

python hello.py

Hello, World!

Python for Finance

Juan F. Imbet Ph.D. 26

Running Python code
Large code is normally written in a text editor and then executed in the terminal. This is
the preferred way to write Python code. A good practice (and a necessary one to run
code in e.g. parallel) is to check that the file is being run as the main program and not
as a module.

hello.py
if __name__ == '__main__':
 print("Hello, World!")

python hello.py

Hello, World!

Python for Finance

Juan F. Imbet Ph.D. 27

Pseudo-code
Pseudo-code is a detailed description of what a computer program or algorithm must
do, expressed in a formally-styled natural language rather than in a programming
language. Pseudo-code is used to plan out the structure of a program before writing
actual code.

Python for Finance

Juan F. Imbet Ph.D. 28

Some good practices that we will follow

Type hints

Type hints are a formalized way of adding type annotations to Python code. Type hints
are not enforced by the Python interpreter, but they can be used by external tools such
as type checkers, IDEs, etc.

def add(x: int, y: int) -> int:
 return x + y

Python for Finance

Juan F. Imbet Ph.D. 29

Checking the size of an object
import sys
x = 1
sys.getsizeof(x)

28

Checking the type of an object
type(x)

int

Python for Finance

Juan F. Imbet Ph.D. 30

Checking the memory address of an object
id(x)

140735674332528

Testing if an object is of a certain type
isinstance(x, int)

True

Python for Finance

Juan F. Imbet Ph.D. 31

Checking the documentation of an object
help(x)

Help on int object:

Looking at the source code of an object
import inspect
import pandas
inspect.getsource(pandas)

from __future__ import annotations\n\n__docformat...

Python for Finance

Juan F. Imbet Ph.D. 32

Checking the attributes of an object
class Car:
 def __init__(self, color, model, mileage):
 self.color = color
 self.model = model
 self.mileage = mileage

car = Car('blue', 'BMW', 10000)
dir(car)

['__class__',
 '__delattr__',
 '__dict__',
 ...
 'color',
 'mileage',
 'model']

Python for Finance

Juan F. Imbet Ph.D. 33

In interactive mode, the interpreter will print the
result of the last expression
1 + 1

2

I will abuse notation and display the output of some operations without the print
function

x = 1
y = 2
x
y

1
2

Python for Finance

Juan F. Imbet Ph.D. 34

Errors
Errors are a part of programming. Errors are caused by mistakes in the code, and they
stop the program from being executed. Python has many built-in error types, and even
allows you to create your own custom errors.

x = 1
y = 0
x / y

ZeroDivisionError: division by zero

Raise an error
raise ValueError('This is a value error')

ValueError: This is a value error

Python for Finance

Juan F. Imbet Ph.D. 35

Exceptions
Exceptions are raised when the program is syntactically correct but the code resulted in
an error. This causes the program to stop execution. Exceptions and errors can be
handled using try-except blocks.

x = 1
y = 0
try:
 x / y
except ZeroDivisionError:
 print('Cannot divide by zero')

Cannot divide by zero

Python for Finance

Juan F. Imbet Ph.D. 36

Warnings
Warnings are raised when the program is syntactically correct but there may be a
problem. This does not cause the program to stop execution. Warnings can be ignored,
or they can be turned into errors using the warnings module. Always be careful when
ignoring warnings, as they may indicate a problem with the code. For example, never
ignore warnings about matrix determinants being close to zero.

import warnings
warnings.warn('This is a warning')

<ipython-input-1-1a2b3c4d5e6f>:2: UserWarning: This is a warning
 warnings.warn('This is a warning')

Supress warnings

import warnings
warnings.filterwarnings('ignore')

Python for Finance

Juan F. Imbet Ph.D. 37

Navigate through error messages
x = 1
y = 0
x / y

ZeroDivisionError Traceback (most recent call last)
Cell In [18], line 3
 1 x = 1
 2 y = 0
----> 3 x / y

ZeroDivisionError: division by zero

Python will tell you the type of error, the line of code that caused the error, and a
description of the error. This information can be used to fix the error. However,
sometimes the error message is not very helpful, and identifying the cause of the error
comes with experience.

Python for Finance

Juan F. Imbet Ph.D. 38

Being informative but not too verbose
Verbose means using more words than necessary. In programming, verbose normally
refers to code that is longer than necessary, or that is intensive in the messages it
prints.

A good practice is to be verbose if the user requires it.

An inadequate code

print("About to do something")
x = 1
print("Did something")
y = 2
print("Did something else")
z = x + y
print("Im done")

Python for Finance

Juan F. Imbet Ph.D. 39

Let's start coding!

Python for Finance

Juan F. Imbet Ph.D. 40

Byte and other notations
One byte equals 8 bits. A bit is a single binary digit, either a 0 or a 1. A byte can
represent 256 different values, which is enough to represent all the letters in the English
alphabet (both upper and lower case), the numbers 0-9, and some special characters.
Base 2 is not the only way to represent numbers. Base 8 (octal) and base 16
(hexadecimal) are also commonly used.

x = 0b1010 # binary
y = 0o12 # octal
z = 0xA # hexadecimal

10
10
10

Python for Finance

Juan F. Imbet Ph.D. 41

How to represent an integer in binary?
Zero followed by a lowercase b and then the binary representation , e.g. 0b1010

x = 0b1010

10

How to represent an integer in octal?
Zero followed by a lowercase o and then the octal representation , e.g. 0o12

x = 0o12

10

Python for Finance

Juan F. Imbet Ph.D. 42

How to represent an integer in hexadecimal?
Zero followed by a lowercase x and then the hexadecimal representation , e.g. 0xA

x = 0xA

10

We will not enter into details on the arithmetic and representation of numbers in
different bases. Nevertheless we can switch between bases using the following
functions

bin(10) # '0b1010'
oct(10) # '0o12'
hex(10) # '0xa'

Python for Finance

Juan F. Imbet Ph.D. 43

Variables and data types
Variables are used to store data in a program. Variables can be thought of as containers
that hold information. Their value (in Python) can be changed as the program runs
(Dynamic Typing).

Python comes with many built-in data types, and you can define your own data types
as well. The most common data types are strings, integers, floats, and booleans.
Expressed in python as

x = 1
y = 2.5
z = 'Hello World'
w = True

Python for Finance

Juan F. Imbet Ph.D. 44

Strings
Strings are used to store text. They are immutable, meaning that their value cannot be
changed after they are created. Strings can be created using single quotes, double
quotes, or triple quotes.

x = 'Hello World'
y = "Hello Again"
z = '''Hello World'''

Strings occupy memory, and the amount of memory they occupy depends on their
length. Triple quotes are used to create multi-line strings.

Python for Finance

Juan F. Imbet Ph.D. 45

Most common string methods
x = 'HELLO world'
x.upper() # 'HELLO WORLD'
x.lower() # 'hello world'
x.title() # 'Hello World'
x.capitalize() # 'Hello world'
x.swapcase() # 'hello WORLD'
x.replace('world', 'universe') # 'HELLO universe'
x.count('l') # 3
x.startswith('H') # True
x.endswith('d') # True
x.find('l') # 2
x.find('z') # -1
x.index('l') # 2
x.index('z') # ValueError
x.isalnum() # False
x.isalpha() # False
x.isdecimal() # False
x.isdigit() # False
x.islower() # False
x.isupper() # False
x.isspace() # False
x.istitle() # False
x.split() # ['HELLO', 'world']

Python for Finance

Juan F. Imbet Ph.D. 46

More methods
x = 'HELLO'
y = 'world'
x + y # 'HELLOworld'
x * 3 # 'HELLOHELLOHELLO'
x[0] # 'H'
x[1] # 'E'
x[-1] # 'O'
x[1:3] # 'EL'
x[1:] # 'ELLO'
x[:3] # 'HEL'
x[::2] # 'HLO'
x[::-1] # 'OLLEH'

' '.join([x, y]) # 'HELLO world'

x.find(y) # -1

Python for Finance

Juan F. Imbet Ph.D. 47

Formatting strings
x = 'Hello'
y = 'World'

print('Hello World')
print('Hello', 'World')
print('Hello ' + 'World')
print('Hello %s' % 'World')
print('Hello {}'.format('World'))
print(f'Hello {y}')

Hello World
Hello World
Hello World
Hello World
Hello World
Hello World

Python for Finance

Juan F. Imbet Ph.D. 48

Byte strings
Byte strings are used to store binary data. Byte strings can be created using the b
prefix.

x = b'Hello World'

b'Hello World'

The main difference is that byte strings are already encoded, whereas regular strings
are not. This means that byte strings can only contain ASCII characters, whereas regular
strings can contain any Unicode characters.

Python for Finance

Juan F. Imbet Ph.D. 49

ASCII vs Unicode
ASCII is a character encoding standard that uses 7 bits to represent all uppercase and
lowercase letters, numbers, punctuation, and other symbols. ASCII is limited to 128
characters, which is enough to represent all the characters in the English alphabet.

Unicode is a character encoding standard that uses 8, 16, or 32 bits to represent all
uppercase and lowercase letters, numbers, punctuation, and other symbols. Unicode is
not limited to 128 characters, and can represent over 1 million characters.

Example

x = 'Hello World' # ASCII
y = '你好世界' # Unicode

Python for Finance

Juan F. Imbet Ph.D. 50

Encoding and decoding strings
Encoding is the process of converting a string into a byte string. Decoding is the
process of converting a byte string into a string. The default encoding is UTF-8, which
uses 8 bits to represent each character.

x = 'Hello World'
y = x.encode()
z = y.decode()

b'Hello World'
'Hello World'

Python for Finance

Juan F. Imbet Ph.D. 51

Documentation of string methods
help(str)

Help on class str in module builtins:

Python for Finance

Juan F. Imbet Ph.D. 52

Integers
Integers are used to store whole numbers. Integers can be created using the int()
function, or by just writing a number with no decimal point.

x = 1
y = int('2')

All integers occupy the same amount of memory, regardless of their value. In a 64-bit
system, integers occupy 28 bytes of memory.

import sys
sys.getsizeof(1)

28

Python for Finance

Juan F. Imbet Ph.D. 53

Most common integer methods
x = 1
x.bit_length() # 1
x.to_bytes(2, byteorder='big') # b'\x00\x01'
x.to_bytes(2, byteorder='little') # b'\x01\x00'
x.from_bytes(b'\x00\x01', byteorder='big') # 1
x.from_bytes(b'\x01\x00', byteorder='little') # 1

Python for Finance

Juan F. Imbet Ph.D. 54

Methods between integers
x = 1
y = 2
x + y # 3
x - y # -1
x * y # 2
x / y # 0.5 - float
x // y # 0
x % y # 1
x ** y # 1

Documentation of integer methods

help(int)

Help on class int in module builtins:

Python for Finance

Juan F. Imbet Ph.D. 55

Booleans
Booleans are used to store truth values. They can be created using the bool()
function, or by just writing True or False . They are a subtype of integers, and True is
equal to 1 and False is equal to 0 . They occupy the same amount of memory as
integers. In many languages booleans occupy 1 bit of memory, but in Python they
occupy 28 bytes of memory.

True
bool('True')

True
True

Python for Finance

Juan F. Imbet Ph.D. 56

Boolean logic
Boolean logic is a branch of mathematics that deals with true and false values. Boolean
logic is used to make decisions in computer programs. Boolean logic is based on the
work of the English mathematician George Boole.

x = True
y = False
x and y # False
x or y # True
not x # False

Any complex logical expression such as xor can be expressed as a combination of and,
or, and not.

Python for Finance

Juan F. Imbet Ph.D. 57

Order of operations
The order of operations is the order in which mathematical expressions are evaluated.
The order of operations is important because it can change the result of an expression.
The order of operations is as follows:

1. Parentheses

2. Exponents

3. Multiplication and division

4. Addition and subtraction

x = 1
y = 2
z = 3
x + y * z # 7
(x + y) * z # 9

Python for Finance

Juan F. Imbet Ph.D. 58

Floats
Floats are used to store decimal numbers. They can be created using the float()
function, or by just writing a number with a decimal point. Interestingly enough, floats
are stored in binary, and they occupy less memory than integers.

x = 1.0
y = float('2.5')
z = 1
import sys
sys.getsizeof(x) # 24
sys.getsizeof(z) # 28

24
28

Python for Finance

Juan F. Imbet Ph.D. 59

Why do floats occupy less memory than integers?
Integers are stored in binary, and they occupy 28 bytes of memory. Floats are also
stored in binary, but they occupy less memory because they are stored in scientific
notation. This means that the decimal point is not stored, and the exponent is stored
separately.

x = 1.0
y = 1e0
z = 1e1
sys.getsizeof(x) # 24
sys.getsizeof(y) # 24
sys.getsizeof(z) # 24

24
24
24

Python for Finance

Juan F. Imbet Ph.D. 60

Most common float methods
x = 1.0
x.is_integer() # True
x.hex() # '0x1.0000000000000p+0'
x.as_integer_ratio() # (1, 1)
x.is_integer() # True
x.hex() # '0x1.0000000000000p+0'
x.as_integer_ratio() # (1, 1)

Python for Finance

Juan F. Imbet Ph.D. 61

Methods between floats
x = 1.0
y = 2.5
x + y # 3.5
x - y # -1.5
x * y # 2.5
x / y # 0.4
x // y # 0.0
x % y # 1.0
x ** y # 1.0

Python for Finance

Juan F. Imbet Ph.D. 62

Lists
Lists are used to store multiple items in a single variable. They can be created using
square brackets, or by using the list() function. Lists are mutable, meaning that their
values can be changed after they are created.

x = [1, 2, 3]

[1, 2, 3]

Lists can contain any type of data, including other lists.

x = [1, 2.0, True, [4, 'c', 6]]

[1, 2.0, True, [4, 'c', 6]]

Python for Finance

Juan F. Imbet Ph.D. 63

Most common list methods
Many methods are performed inplace, i.e. they modify the list and return None

x = [1, 2, 3]
x[0] # 1 # The first element of the list is at index 0
x.append(4) # [1, 2, 3, 4]
x.extend([5, 6]) # [1, 2, 3, 4, 5, 6]
x.insert(0, 0) # [0, 1, 2, 3, 4, 5, 6]
x.remove(0) # [1, 2, 3, 4, 5, 6]
x.pop() # [1, 2, 3, 4, 5]
x.pop(0) # [2, 3, 4, 5]
x.clear() # []

Python for Finance

Juan F. Imbet Ph.D. 64

More list methods
x = [1, 2, 3]
y = [4, 5, 6]
x + y # [1, 2, 3, 4, 5, 6] - concatenation
x * 3 # [1, 2, 3, 1, 2, 3, 1, 2, 3] - repetition
x.index(1) # 0
x.count(1) # 1

Look how lists and strings are similar. This is because strings are just lists of characters
(also called chars).

x = ['1', '2', '3']
y = '123'
x[0] # '1'
y[0] # '1'
x[0] + x[1] # '12'
y[0] + y[1] # '12'
len(x) # 3

Python for Finance

Juan F. Imbet Ph.D. 65

Dictionaries
Dictionaries are used to store key-value pairs. They can be created using curly braces, or
by using the dict() function. Dictionaries are mutable, meaning that their values can
be changed after they are created.

x = {'a': 1, 'b': 2, 'c': 3}

{'a': 1, 'b': 2, 'c': 3}

Dictionaries can contain any type of data, including other dictionaries.

x = {'a': 1, 'b': 2, 'c': {'d': 4, 'e': 5}}

{'a': 1, 'b': 2, 'c': {'d': 4, 'e': 5}}

Dictionaries in python are closely related to JSON objects, which are used to store data
in web applications.

Python for Finance

Juan F. Imbet Ph.D. 66

Most common dictionary methods
x = {'a': 1, 'b': 2, 'c': 3}
x['a'] # 1
x['d'] # KeyError
x.get('a') # 1
x.get('d') # None
x.keys() # dict_keys(['a', 'b', 'c'])
x.values() # dict_values([1, 2, 3])
x.items() # dict_items([('a', 1), ('b', 2), ('c', 3)])
x.pop('a') # {'b': 2, 'c': 3}

Python for Finance

Juan F. Imbet Ph.D. 67

More dictionary methods
x = {'a': 1, 'b': 2, 'c': 3}
x['d'] = 4 # {'a': 1, 'b': 2, 'c': 3, 'd': 4}
x.update({'e': 5, 'f': 6}) # {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5, 'f': 6}
x.popitem() # {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
x.clear() # {}

Hash tables are closely related to dictionaries. They provide a "fast" way to look up
values using keys. Hash tables are used in many programming languages, including
Python.

Python for Finance

Juan F. Imbet Ph.D. 68

Tuples
Tuples are used to store multiple items in a single variable. They can be created using
parentheses, or by using the tuple() function. Tuples are immutable, meaning that
their values cannot be changed after they are created.

x = (1, 2, 3)

(1, 2, 3)

Tuples can contain any type of data, including other tuples.

x = (1, 2.0, True, (4, 'c', 6))

(1, 2.0, True, (4, 'c', 6))

Python for Finance

Juan F. Imbet Ph.D. 69

Tuples are immutable
x = (1, 2, 3)
x[0] = 0 # TypeError

TypeError: 'tuple' object does not support item assignment

Python for Finance

Juan F. Imbet Ph.D. 70

Most common tuple methods
x = (1, 2, 3)
x[0] # 1
x.count(1) # 1
x.index(1) # 0

Python for Finance

Juan F. Imbet Ph.D. 71

More tuple methods
x = (1, 2, 3)
y = (4, 5, 6)
x + y # (1, 2, 3, 4, 5, 6) - concatenation
x * 3 # (1, 2, 3, 1, 2, 3, 1, 2, 3) - repetition

Python for Finance

Juan F. Imbet Ph.D. 72

Sets
Sets are used to store multiple items in a single variable. They can be created using
curly braces, or by using the set() function. Sets are mutable, meaning that their
values can be changed after they are created. A set only contains unique values,
meaning that duplicates are not allowed.

x = {1, 2, 3}

{1, 2, 3}

Sets can contain any type of data, including other sets.

x = {1, 2.0, True, (4, 'c', 6)}

{1, 2.0, True, (4, 'c', 6)}

Python for Finance

Juan F. Imbet Ph.D. 73

My own type: Overview of OOP
Python defines new types using the class keyword. Classes are used to create objects,
which are instances of a class. Objects can have attributes and methods. Attributes are
variables that belong to an object, and methods are functions that belong to an object.

class Human:
 def __init__(self, name, age):
 self.name = name
 self.age = age

 def say_hello(self):
 print(f'Hello, my name is {self.name} and I am {self.age} years old')

john = Human('John', 28)
john.say_hello()

Hello, my name is John and I am 28 years old

Python for Finance

Juan F. Imbet Ph.D. 74

Indentation
Indentation is used to delimit blocks of code in Python. This is different from other
programming languages, which use curly braces to delimit blocks of code. Indentation
is important because it determines which statements are executed in a program.
Indentation is also important because it makes code easier to read. Keyboards have a
tab key, which is used to indent code. Most code editors will automatically indent code
for you. A python indentation is 4 spaces (also called 1 tab).

Indentation is important in Python! Always use an IDE that automatically indents your
code. If you don't, you will get errors that are difficult to debug.

Python for Finance

Juan F. Imbet Ph.D. 75

Control flow
Control flow is the order in which statements are executed in a program. Control flow
statements are used to control the order in which statements are executed. The most
common control flow statements are if statements, for loops, and while loops.

Python for Finance

Juan F. Imbet Ph.D. 76

If, elif, and else statements
If statements are used to make decisions in a program. They allow the program to
execute different code depending on whether or not a condition is true. If statements
can be used by themselves, or they can be combined with elif and else statements.

x = 1
if x > 0:
 print('x is positive')
elif x < 0:
 print('x is negative')
else:
 print('x is zero')

x is positive

Python for Finance

Juan F. Imbet Ph.D. 77

If statements can be alone or combined with elif and
else statements
x = 1
if x > 0:
 print('x is positive')

x is positive

x = -1
if x > 0:
 print('x is positive')
elif x < 0:
 print('x is negative')

x is negative

Python for Finance

Juan F. Imbet Ph.D. 78

Elif and else statements are optional, and cannot be
used without an if statement
x = 0
elif x < 0:
 print('x is negative')
else:
 print('x is zero')

SyntaxError: invalid syntax

Python for Finance

Juan F. Imbet Ph.D. 79

If statements in one line
Sometimes it is useful to write if statements in one line. This is called a ternary operator.
It is useful when you want to assign a value to a variable depending on a condition.

x = 1
y = 'positive' if x > 0 else 'negative'
y

'positive'

Python for Finance

Juan F. Imbet Ph.D. 80

__eq__ and == methods
We say that two objects are equal if they have the same value. In Python, the ==
operator is used to check if two objects are equal. The == operator is implemented
using the __eq__ method. This method can be overridden to change the behavior of
the == operator.

class Human:
 ...
 def __eq__(self, other):
 return self.age == other.age

john = Human('John', 28)
jane = Human('Jane', 28)
john == jane # True
2==2.0 # True

True
True

Python for Finance

Juan F. Imbet Ph.D. 81

__lt__ and < , __gt__ and > , __le__ and <= ,
__ge__ and >= methods

Mathematical operators that extend the natural order of numbers to other objects.
These methods can be overridden to change the behavior of the mathematical
operators.

class Human:
 ...
 def __lt__(self, other):
 return self.age < other.age

 def __gt__(self, other):
 return self.age > other.age

 def __le__(self, other):
 return self.age <= other.age

 def __ge__(self, other):
 return self.age >= other.age

Human('John', 28) < Human('Jane', 28) # False

Python for Finance

Juan F. Imbet Ph.D. 82

Loops
Loops are used to repeat code in a program. They allow the program to execute the
same code many times without having to write it over and over again. The most
common loops are for loops and while loops.

Python for Finance

Juan F. Imbet Ph.D. 83

For loops
For loops are used to iterate over a pre-determined sequence of values. They allow the
program to execute the same code many times without having to write it over and over
again. For loops can be used to iterate over any sequence, including lists, tuples,
dictionaries, and strings.

x = [1, 2, 3]
for i in x:
 print(i)

1
2
3

Python for Finance

Juan F. Imbet Ph.D. 84

For loops, range, and enumerate
x = [1, 2, 3]
for i in range(len(x)):
 print(i)

0
1
2

for i, j in enumerate(x):
 print(i, j)

0 1
1 2
2 3

Python for Finance

Juan F. Imbet Ph.D. 85

zip

Loop over two or more sequences at the same time

x = [1, 2, 3]
y = ['a', 'b', 'c']
for i, j in zip(x, y):
 print(i, j)

1 a
2 b
3 c

Python for Finance

Juan F. Imbet Ph.D. 86

Can we mix methods?
zip and enumerate

x = [1, 2, 3]
y = ['a', 'b', 'c']
for i, j in enumerate(zip(x, y)):
 print(i, j)

0 (1, 'a')
1 (2, 'b')
2 (3, 'c')

Python for Finance

Juan F. Imbet Ph.D. 87

One line for loops
Useful to create lists

x = [i for i in range(3)]
x

[0, 1, 2]

Python for Finance

Juan F. Imbet Ph.D. 88

While loops
While loops are used to repeat code until a condition is no longer true. They allow the
program to execute the same code many times without having to write it over and over
again. While loops can be used to iterate over any sequence, including lists, tuples,
dictionaries, and strings.

x = 1
while x < 3:
 print(x)
 x += 1

1
2

Python for Finance

Juan F. Imbet Ph.D. 89

Break statements
Break statements are used to exit a loop. They allow the program to exit a loop early if
a certain condition is met.

x = list(range(1000))
for i in x:
 if i == 3:
 break
 print(i)

0
1
2

Python for Finance

Juan F. Imbet Ph.D. 90

Continue statements
Continue statements are used to skip the rest of a loop. They allow the program to skip
the rest of a loop if a certain condition is met.

x = list(range(4))
for i in x:
 if i == 2:
 continue
 print(i)

0
1
3

Python for Finance

Juan F. Imbet Ph.D. 91

Pass statements
Pass statements are used to do nothing. But they are useful to complete a block of
code that is not yet implemented, or create empty structures.

class Human:
 pass

They are useful for try and except blocks when nothing should be done in the
except block.

try:
 x = 1 / 0
except ZeroDivisionError:
 pass # Not recommended

Python for Finance

Juan F. Imbet Ph.D. 92

Modules
Most interesting things in Python do not come built-in. They are provided by external
libraries called modules. Modules are files that contain Python code. They can be
imported into your program using the import keyword. Modules can contain
functions, classes, and other things. Optionally you can import only some functions
from a module using the from keyword. You can also import all functions from a
module using the * operator, and rename a module using the as keyword.

import math
from math import sqrt
from math import *
import math as m
from math import sqrt as s

math.sqrt(4) # 2.0
sqrt(4) # 2.0
s(4) # 2.0
m.sqrt(4) # 2.0
pi # from math module

Python for Finance

Juan F. Imbet Ph.D. 93

Creating your own module
my_module.py
def add(x, y):
 return x + y

add(1,2)

import my_module
my_module.add(1,2)

3
3 # Look that the function is called twice

Python for Finance

Juan F. Imbet Ph.D. 94

Importing your own module
Use the __name__ variable to check if a module is being imported or run directly. This is
useful when you want to run a module as a script, but also import it into another
module.

my_module.py
def add(x, y):
 return x + y

if __name__ == '__main__':
 print(add(1,2))

#main.py
import my_module
my_module.add(1,2)

python main.py

3

Python for Finance

Juan F. Imbet Ph.D. 95

Functions
Functions are used to perform a specific task. They allow the program to execute the
same code many times without having to write it over and over again. Functions can be
created using the def keyword. Functions can have parameters, which are variables
that are passed into the function. Functions can also have return values, which are
values that are returned by the function.

def add(x, y):
 return x + y

add(1, 2) # 3

Python for Finance

Juan F. Imbet Ph.D. 96

Functions are objects
Functions are objects, and they can be passed around like any other object. This means
that functions can be passed as arguments to other functions, and they can be returned
by other functions. Parenthesis are used to call a function.

add
add(1, 2)

<function __main__.add(x, y)>
3

Python for Finance

Juan F. Imbet Ph.D. 97

One line functions, lambda expressions
Sometimes it is useful to write functions in one line. This is called a lambda expression.
It is useful when you want to pass a function as an argument to another function.

add = lambda x, y: x + y
add(1, 2) # 3

One line functions can also be created without an input

x = lambda: 1
x() # 1

Python for Finance

Juan F. Imbet Ph.D. 98

Function kwargs
A keyword argument is an argument that is passed by name. They are useful when you
want to have default values for some arguments. Keyword arguments can be passed in
any order, and they can be used with any number of arguments.

def add_numbers(x,y, verbose = False):
 if verbose:
 print(f'Adding {x} and {y}')
 return x + y

add_numbers(1, 2) # 3
add_numbers(1, 2, verbose=True) # 3

3
Adding 1 and 2
3

Python for Finance

Juan F. Imbet Ph.D. 99

args and kwargs
Functions can have any number of arguments. This is useful when you don't know how
many arguments a function will need. The * operator is used to pass a variable
number of arguments to a function. The ** operator is used to pass a variable number
of keyword arguments to a function.

def add(*args):
 return sum(args)

add(1, 2, 3) # 6

def add(**kwargs):
 return sum(kwargs.values())

add(x=1, y=2, z=3) # 6

def add(*args, **kwargs):
 return sum(args) + sum(kwargs.values())

add(1, 2, 3, x=1, y=2, z=3) # 12

Python for Finance

Juan F. Imbet Ph.D. 100

Logging
Logging is used to record information about a program's execution. It is useful for
debugging, and it can also be used to record information about a program's execution.
Logging is done using the logging module. The logging module has many built-in
functions, and it can also be customized to suit your needs.

import logging
logging.basicConfig(level=logging.INFO)
logging.info('This is an info message')
logging.warning('This is a warning message')
logging.error('This is an error message')
logging.critical('This is a critical message')

INFO:root:This is an info message
WARNING:root:This is a warning message
ERROR:root:This is an error message
CRITICAL:root:This is a critical message

Python for Finance

Juan F. Imbet Ph.D. 101

An appropriate optional logging
Use the fact that and statements are evaluated from left to right and stop as soon as a
False value is found.

import logging
logging.basicConfig(level=logging.INFO)

def some_function(verbose = False):
 if verbose:
 logging.info('This is an info message')
 logging.warning('This is a warning message')
 logging.error('This is an error message')
 logging.critical('This is a critical message')

 # equivalently
 verbose and logging.info('This is an info message')
 verbose and logging.warning('This is a warning message')
 verbose and logging.error('This is an error message')
 verbose and logging.critical('This is a critical message')

Python for Finance

Juan F. Imbet Ph.D. 102

Other logging methods - write to a file
Write to a file
logging.basicConfig(filename='app.log', filemode='w', format='%(name)s - %(levelname)s - %(message)s')
logging.warning('This will get logged to a file')

Python for Finance

Juan F. Imbet Ph.D. 103

Assertion
Assertions are used to check if a condition is true. They are useful for debugging, and
they can also be used to check if a program is working as expected. Assertions are done
using the assert keyword. The assert keyword has two arguments: a condition, and
an optional message. If the condition is true, then the program continues. If the
condition is false, then the program stops and an error is raised.

x = 1
assert x == 1
assert x == 0, 'x should be 0'

AssertionError: x should be 0

Python for Finance

Juan F. Imbet Ph.D. 104

Tests
Tests are used to check if a program is working as expected. They are useful for
debugging, and they can also be used to check if a program is working as expected.
Tests are done using the unittest module. The unittest module has many built-in
functions, and it can also be customized to suit your needs. We will learn later to design
tests using the unittest module. For now let's see an example to make sure the
implicit function sum works as expected.

import unittest
class TestSum(unittest.TestCase):
 def test_sum(self):
 self.assertEqual(sum([1, 2, 3]), 6, "Should be 6")

if __name__ == '__main__':
 unittest.main()

--
Ran 1 test in 0.000s
OK

Python for Finance

Juan F. Imbet Ph.D. 105

Basic User Input
User input is used to get input from the user. It is useful for getting information from
the user, and it can also be used to get information from the user. User input is done
using the input function. The input function has one argument: a prompt. The
prompt is displayed to the user, and the user can enter a value. The value is returned by
the input function.

x = input('Enter a number: ')
x

Enter a number: 1
'1'

Python for Finance

Juan F. Imbet Ph.D. 106

Small Project: Temperature Converter
def celsius_to_fahrenheit(celsius):
 return celsius * 9 / 5 + 32

def fahrenheit_to_celsius(fahrenheit):
 return (fahrenheit - 32) * 5 / 9

Python for Finance

Juan F. Imbet Ph.D. 107

Small Project: Temperature Converter
def main():
 while True:
 try:
 temperature = float(input('Enter a temperature: '))
 break
 except ValueError:
 print('Please enter a number')

 while True:
 try:
 unit = input('Enter a unit: ')
 if unit.lower() == 'c':
 print(f'{temperature}°C = {celsius_to_fahrenheit(temperature)}°F')
 break
 elif unit.lower() == 'f':
 print(f'{temperature}°F = {fahrenheit_to_celsius(temperature)}°C')
 break
 else:
 print('Please enter a valid unit')
 except ValueError:
 print('Please enter a valid unit')

Python for Finance

Juan F. Imbet Ph.D. 108

Small Project: Temperature Converter
if __name__ == '__main__':
 main()

Enter a temperature: 100
Enter a unit: c
100.0°C = 212.0°F

Python for Finance

Juan F. Imbet Ph.D. 109

File I/O
File I/O is used to read and write files. It is useful for storing data. File I/O is done using
the open function. The open function has two arguments: a filename, and a mode. The
mode is used to specify how the file should be opened. The mode can be r for
reading, w for writing, a for appending, r for reading and writing, b for binary, and
+ for updating. The default mode is r .

Writing to a file
with open('file.txt', 'w') as f:
 f.write('Hello World')

Reading from a file
with open('file.txt', 'r') as f:
 print(f.read())

Python for Finance

Juan F. Imbet Ph.D. 110

File I/O - Don't s
When dealing with files always use the with statement. This ensures that the file is
closed properly. If you don't use the with statement, then you have to close the file
manually.

Do not do this
f = open('file.txt', 'w')
f.write('Hello World')
f.close()

Python for Finance

Juan F. Imbet Ph.D. 111

Decorators
Decorators are used to modify the behavior of a function. They allow the program to
modify the behavior of a function without changing the function itself. Decorators are
done using the @ symbol. The @ symbol is used to specify a decorator. The decorator
is a function that takes a function as an argument, and returns a function. The decorator
can be used to modify the behavior of the function.

def decorator(func):
 def wrapper(*args, **kwargs):
 # Do something before
 func(*args, **kwargs)
 # Do something after
 return wrapper

Python for Finance

Juan F. Imbet Ph.D. 112

Useful decorators
Timing a function

import time
def timer(func):
 def wrapper(*args, **kwargs):
 start = time.time()
 func(*args, **kwargs)
 end = time.time()
 print(f'{func.__name__} took {end - start} seconds')
 return wrapper

@timer
def add(x, y):
 return x + y

add(1, 2)

add took 0.0 seconds

Python for Finance

Juan F. Imbet Ph.D. 113

Useful decorators
Logging a function

import logging
logging.basicConfig(level=logging.INFO)

def logger(func):
 def wrapper(*args, **kwargs):
 logging.info(f'Running {func.__name__} with args {args} and kwargs {kwargs}')
 func(*args, **kwargs)
 return wrapper

Python for Finance

Juan F. Imbet Ph.D. 114

Timeit
Timeit is used to time a function using the timeit module.

import timeit
timeit.timeit('1 + 1') # input has to be string
%timeit 1 + 1 # Computes the average and s.d. of different runs.

0.01200000000000001
8.52 ns ± 0.00658 ns per loop (mean ± std. dev. of 7 runs, 100,000,000 loops each)

Python for Finance

Juan F. Imbet Ph.D. 115

Type hints
Type hints are used to specify the type of a variable. They allow the program to specify
the type of a variable without changing the variable itself. Type hints are done using the
: symbol. The : symbol is used to specify a type hint. Hints are not enforced by the

interpreter, but they are useful for documentation and debugging.

def add(x: int, y: int) -> int:
 z: int = x + y
 return z

add(1, 2)
add(1.0, 2) # No error

Python for Finance

Juan F. Imbet Ph.D. 116

Docstrings
Docstrings are used to document a function using the """ string. Try always to
document your functions. Docstrings are useful for documentation and debugging. Use
the following format for your docstrings. Most IDE will automatically show the docstring
when you hover over a function and even help you to write it.

def add(x: int, y: int) -> int:
 """Add two numbers

 Args:
 x (int): First number
 y (int): Second number

 Returns:
 int: Sum of x and y
 """
 z: int = x + y
 return z

Docstrings can be accessed using the function help .

Python for Finance

Juan F. Imbet Ph.D. 117

Machine Epsilon
Machine epsilon is the smallest number that can be added to 1.0 and still be different
from 1.0. It is useful for determining the precision of a floating point number. Machine
epsilon is done using the sys module. The sys module has many built-in functions,
and it can also be customized to suit your needs.

import sys
sys.float_info.epsilon # 2.220446049250313e-16
1.0 + sys.float_info.epsilon == 1.0 # False
1.0 + sys.float_info.epsilon/2 == 1.0 # True

Python for Finance

Juan F. Imbet Ph.D. 118

