Lesson 3: GMM Estimation

Some sources used in the slides

- Whited T. and Taylor L. Summer School in Structural Estimation.
- Wooldridge, J. M. (2001). Econometric analysis of cross section and panel data.
- Asset Pricing, Cochrane J. 2006.

Introduction

- GMM stands for Generalized Method of Moments. It is a generalization of the method of moments estimator.
- It was formalized by Hansen (1982), and since has become one of the most widely used methods of estimation for models in economics and finance.
- It is the basis for methods like the Simulated Method of Moments (SMM) and the Indirect Inference (II) estimator.
- The power of GMM is that it allows us to estimate models without having to specify the distribution of the data.

The method of moments estimator (Chebyshev)

- It was introduced by Pafnuty Chebyshev in 1887 in the proof of the central limit theorem.
- Suppose you need to estimate k unknown parameters $\theta_1, \ldots, \theta_k$ that characterize the distribution of a random variable X.

$$f_X(x; heta_1, \dots, heta_k)$$

Now, assume that the first k moments can be expressed as a function of the parameters:

$$egin{aligned} \mu_1 &= E[X] = g_1(heta_1, \ldots, heta_k) \ \mu_2 &= E[X^2] = g_2(heta_1, \ldots, heta_k) \ &dots \ \mu_k &= E[X^k] = g_k(heta_1, \ldots, heta_k) \end{aligned}$$

The method of moments (cont.)

Estimate the population moment with the sample moment

$$\hat{\mu}_j = rac{1}{n} \sum_{i=1}^n x_i^j$$

Solve the system of equations

$$\hat{\mu}_1 = g_1(\hat{ heta}_1, \dots, \hat{ heta}_k)$$
 $\hat{\mu}_2 = g_2(\hat{ heta}_1, \dots, \hat{ heta}_k)$
 \vdots
 $\hat{\mu}_k = g_k(\hat{ heta}_1, \dots, \hat{ heta}_k)$

Example, normal distribution

$$egin{aligned} \mu_1 &= E[X] = \int_{-\infty}^\infty x f_X(x;\mu,\sigma) dx = \ \mu_2 &= E[X^2] = \int_{-\infty}^\infty x^2 f_X(x;\mu,\sigma) dx \end{aligned}$$

• After observing a sample of n observations $\{x_1,\ldots,x_n\}$, we can estimate the population moments with the sample moments

$$\hat{\mu}_1 = rac{1}{n} \sum_{i=1}^n x_i$$
 $\hat{\mu}_2 = rac{1}{n} \sum_{i=1}^n x_i^2$

• And solve numerically the system of equations.

GMM

- When the number of moments is equal to the number of parameters there is a unique solution to the system of equations.
- However, we cannot compute the standard errors of the estimates. For this task we need to use the GMM estimator, and include more moments.

GMM (cont.)

- Notation in Wooldride
- w_i is a $(M \times 1)$ i.i.d. vector of random variables for observation i.
- θ is a $(P \times 1)$ vector of unknown coefficients (parameters).
- $g(w_i, heta)$ is a (L imes 1) vector of functions $g: \mathbb{R}^M imes \mathbb{R}^P o \mathbb{R}^L \ L \geq P$
- Function g can be potentially non linear.
- Let θ_0 be the true value of θ .
- Let $\hat{\theta}$ be an estimator of θ .
- The hat and naught notation is used to denote estimators and true values, respectively.

Moment Restrictions

• GMM is based on the idea that the moment restrictions should be zero in expectation (e.g. the difference between the sample and population moments).

$$\mathbb{E}[g(w_i, heta_0)] = 0$$

Which in the sample can be written as

$$rac{1}{N}\sum_{i=1}^N g(w_i, heta)=0$$

We want to choose $\hat{\theta}$ such that $N^{-1}\sum_{i=1}^N g(w_i,\hat{\theta})$ is as close to zero as possible.

Criterion Function

- If we have more moments than parameters there might not be a solution to the system of equations, but we can make those moments as close to zero as possible.
- Hint, minimize a weighted sum of squared moments.
- How much importance you give to each moment will be discussed later.
- The estimator $\hat{ heta}$ uses the following function (criterion) as a function to minimize.

$$Q_N(heta) = \Big[N^{-1}\sum_{i=1}^N g(w_i, heta)\Big]'\hat{W}\Big[N^{-1}\sum_{i=1}^N g(w_i, heta)\Big]'$$

where \hat{W} is a positive definite weighting matrix that converges in probbaility to W_0 .

Asymptotic Properties

Hansen (1982) Large Sample Properties of Generalized Method of Moments, **Econometrica**. Two-stage procedure, for any positive semidefined matrix W e.g. I.

$$\hat{ heta_1} = rg\min_{ heta} \left[g_T(heta)
ight]' W \Big[g_T(heta) \Big]$$

First Order Condition

$$rac{\partial g_T(heta)}{\partial heta} W g_T(heta) = a g_T(heta) = 0$$

This estimator is consistent and asymptotically normal but not always efficient, the efficient estimator is obtained by estimating W as the inverse of covariance of moments $g_T(\hat{\theta_1})$ and re-estimate.

Standard Errors

Hansen proved that the estimator

$$\hat{ heta_2} = rg\min_{ heta} \left[g_T(heta)
ight]' \hat{S}^{-1} \Big[g_T(heta) \Big]$$

where \hat{S} is the sample covariance of the moments given $\hat{\theta_1}$, is consistent and asymptotically normal. Define

$$d=rac{\partial g_T(heta)}{\partial heta}$$

Then the asymptotic variance of $\hat{ heta_2}$ is

$$\hat{V}(\hat{ heta_2}) = rac{1}{T} \Big[d' \hat{S}^{-1} d \Big]^{-1}$$

Probability Concepts for GMM

CLT, HAC, and Probability Limits

Central Limit Theorem (CLT)

• **Key result**: For i.i.d. data with $E[g_t]=0$ and $\mathrm{Var}(g_t)=\Sigma$, as $T o\infty$:

$$\sqrt{T}\,ar{g}_T \stackrel{d}{ o} N(0,\Sigma), \quad ext{where } ar{g}_T = rac{1}{T}\sum_{t=1}^T g_t$$

• General CLT: For dependent data (e.g., time series), if g_t is stationary and weakly dependent:

$$\sqrt{T}\, ar{g}_T \stackrel{d}{ o} N(0,S), \quad S = \sum_{j=-\infty}^\infty E[g_t g'_{t-j}]$$

where S is the long-run variance.

• Critical for deriving asymptotic distributions in GMM.

Heteroskedasticity and Autocorrelation (HAC)

- **Problem**: In time series/finance data, moments often exhibit:
 - Heteroskedasticity (varying variance)
 - \circ Autocorrelation ($E[g_t g'_{t-j}]
 eq 0$)
- HAC estimator: Newey-West (1987) kernel estimator:

$$\hat{S} = \hat{\Gamma}_0 + \sum_{j=1}^m igg(1 - rac{j}{m+1}igg)(\hat{\Gamma}_j + \hat{\Gamma}_j')$$

where
$$\hat{\Gamma}_j = rac{1}{T} \sum_{t=j+1}^T g_t g'_{t-j}$$
.

- Truncation parameter: m (e.g., $m = \lfloor 4(T/100)^{2/9}
 floor$).
- ullet Ensures \hat{S} consistently estimates S for GMM standard errors.

Probability Limit (plim)

• Definition: $\hat{ heta}_T \stackrel{p}{ o} heta_0$ if:

$$orall \epsilon > 0, \quad \lim_{T o \infty} P(||\hat{ heta}_T - heta_0|| > \epsilon) = 0$$

- Key properties:
 - i. plim of sample mean: p $\lim rac{1}{T} \sum_{t=1}^T g_t = E[g_t]$
 - ii. Slutsky's theorem: If $\operatorname{plim} \hat{ heta} = heta_0$ and h is continuous,

$$\operatorname{plim} h(\hat{ heta}) = h(heta_0)$$

ullet Critical for GMM: Weighting matrix $W_T \stackrel{p}{ o} W$, and consistency of $\hat{ heta}$.

Formal Derivation of GMM

Based on Hansen (1982)

Moment Conditions

• **Population moments**: True parameter θ_0 satisfies:

$$E[g_t(\theta_0)] = 0$$

where $g_t(\theta)$ is a $m \times 1$ vector of moment conditions.

• Sample analog (average over T observations):

$$g_T(heta) = rac{1}{T} \sum_{t=1}^T g_t(heta)$$

GMM Objective Function

- Weighting matrix: Choose W_T (positive definite, $m \times m$).
- Quadratic form to minimize:

$$Q_T(\theta) = g_T(\theta)' W_T g_T(\theta)$$

First-Order Condition (FOC)

• **Derivative** of $Q_T(\theta)$ w.r.t. θ (a $p \times 1$ vector):

$$rac{\partial Q_T}{\partial heta} = 2G_T(heta)' W_T g_T(heta) = 0$$

where
$$G_T(heta) = rac{1}{T} \sum_{t=1}^T rac{\partial g_t(heta)}{\partial heta}$$
 ($m imes p$ Jacobian).

• **FOC** defines the estimator $\hat{\theta}$:

$$G_T(\hat{ heta})'W_Tg_T(\hat{ heta})=0$$

Asymptotic Distribution

• Taylor expansion of $g_T(\hat{\theta})$ around θ_0 :

$$g_T(\hat{ heta})pprox g_T(heta_0)+G_T(heta_0)(\hat{ heta}- heta_0)$$

• Substitute into FOC:

$$G_T(\hat{ heta})'W_T\left[g_T(heta_0)+G_T(heta_0)(\hat{ heta}- heta_0)
ight]=0$$

Asymptotic Distribution (Cont.)

ullet Rearrange for $\hat{ heta}$ (as $T o \infty$):

$$\sqrt{T}(\hat{ heta}- heta_0)pprox -igl(G_T'W_TG_Tigr)^{-1}G_T'W_T\sqrt{T}g_T(heta_0)$$

where
$$G_T = E\left[rac{\partial g_t(heta_0)}{\partial heta}
ight]$$
 .

Central Limit Theorem (CLT)

• Under regularity conditions:

$$\sqrt{T}\,g_T(\theta_0)\stackrel{d}{\to} N(0,S)$$
 where $S=\lim_{T\to\infty}\mathrm{Var}\left(\sqrt{T}g_T(\theta_0)\right)$ (long-run variance).

Asymptotic Variance

• Combine CLT with expansion:

$$\sqrt{T}(\hat{ heta}- heta_0)\overset{d}{
ightarrow} N\left(0,\,(G'WG)^{-1}G'WSWG(G'WG)^{-1}
ight)$$

$$\circ~G = \mathbb{E}\left[rac{\partial g_t(heta_0)}{\partial heta}
ight]$$

$$\circ W = \operatorname{plim} W_T$$

• Recall the **plim** (probability limit) operator measures convergence in probability.

Efficient GMM

- ullet Optimal weighting matrix: $W=S^{-1}$ minimizes asymptotic variance.
- Asymptotic variance becomes:

$$\operatorname{Avar}(\hat{ heta}) = \left(G'S^{-1}G\right)^{-1}$$

Standard Errors (Detailed)

Estimated asymptotic variance:

$$\widehat{ ext{Avar}}(\hat{ heta}) = rac{1}{T} \Big(\hat{G}' \hat{W} \hat{G} \Big)^{-1} \hat{G}' \hat{W} \hat{S} \hat{W} \hat{G} \Big(\hat{G}' \hat{W} \hat{G} \Big)^{-1}$$

$$\circ$$
 $\hat{G} = rac{1}{T} \sum_{t=1}^{T} rac{\partial g_t(\hat{ heta})}{\partial heta}$

- \circ \hat{S} : HAC estimator (e.g., Newey-West)
- $\hat{S} \circ \hat{W} = \hat{S}^{-1}$ for efficient GMM
- ullet Standard errors: Square roots of diagonal elements divided by T.

Two-Step GMM Procedure

- 1. **First step**: Estimate $\hat{ heta}^{(1)}$ using $W_T=I$ (identity matrix).
- 2. Compute residuals: $g_t(\hat{ heta}^{(1)})$ to estimate \hat{S} .
- 3. Second step: Re-estimate $\hat{ heta}$ using $W_T = \hat{S}^{-1}$.

Goodness of Fit

- The GMM criterion function can be used to test the null hypothesis that the model is correctly specified.
- The test statistic is

$$TQ_T(\hat{ heta}) \stackrel{d}{ o} \chi^2_{L-P}$$

Example, OLS using GMM

Consider the simple linear regression model

$$y = X\beta + \epsilon$$

The OLS conditions are

$$\mathbb{E}[X'\epsilon] = 0 \ \mathbb{E}[\epsilon] = 0$$

Replace

$$g(w_i, heta) = egin{bmatrix} X_i' \epsilon_i \ \epsilon_i \end{bmatrix}$$

Example, OLS using GMM (cont.)

Then the GMM estimator in the first step is

$$egin{aligned} \hat{eta}_1 &= rg \min_{eta} \left[N^{-1} \sum_{i=1}^N igg[egin{aligned} X_i' \epsilon_i \ \epsilon_i \end{matrix} igg]' I igg[N^{-1} \sum_{i=1}^N igg[egin{aligned} X_i' \epsilon_i \ \epsilon_i \end{matrix} igg] \end{aligned}
ight] \ &= rg \min_{eta} \left[N^{-1} \sum_{i=1}^N igg[igg[X_i' (y_i - X_i eta) \ (y_i - X_i eta) \end{matrix} igg] igg]' I igg[N^{-1} \sum_{i=1}^N igg[igg[X_i' (y_i - X_i eta) \ (y_i - X_i eta) \end{matrix} igg] igg] \end{aligned}$$

Example, OLS using GMM (cont.)

Second step, given $\hat{eta_1}$ compute the covariance matrix of the moments

$$\hat{S} = rac{1}{N} \sum_{i=1}^N egin{bmatrix} X_i'(y_i - X_i \hat{eta}_1) \ (y_i - X_i \hat{eta}_1) \end{bmatrix} egin{bmatrix} X_i'(y_i - X_i \hat{eta}_1) \ (y_i - X_i \hat{eta}_1) \end{bmatrix}'$$

Then the GMM estimator is

$$\hat{eta_2} = rg\min_{eta} \left[N^{-1} \sum_{i=1}^N igg[egin{array}{c} X_i'(y_i - X_ieta) \ (y_i - X_ieta) \end{array}
ight]' \hat{S}^{-1} igg[N^{-1} \sum_{i=1}^N igg[igg[X_i'(y_i - X_ieta) \ (y_i - X_ieta) \end{array}
ight] igg]$$

with covariance matrix

$$\hat{V}(\hat{eta_2}) = rac{1}{N} \Big[d' \hat{S}^{-1} d \Big]^{-1}$$

GMM in practice

- In many applications, the covariance matrix of the moments is numerically singular.
- How to solve it?
 - i. Use only 1 step.
 - ii. Add small noise to the variance matrix.
 - iii. Use a "generalized" inverse.

References

Hansen, L. P. (1982). Large Sample Properties of Generalized Method of Moments Estimators. *Econometrica*, 50(4), 1029-1054.