
Algorithm Analysis

Python for Finance

Juan F. Imbet Ph.D. 1

What is an algorithm

An algorithm is a set of instructions that are used to solve a problem.

Example
Find the maximum value in a list of numbers.

1. Set the maximum value to the first value in the list.

2. For each value in the list, if the value is greater than the maximum value, then set
the maximum value to that value.

3. Return the maximum value after looking at all values in the list.

Python for Finance

Juan F. Imbet Ph.D. 2

How can we compare algorithms?

Time complexity - How long does it take to run the algorithm?

Space complexity - How much memory does the algorithm use?
Correctness - Does the algorithm solve the problem, or does it approximate the
solution?

Python for Finance

Juan F. Imbet Ph.D. 3

Big O Notation

One way to compare algorithms is by understanding its behavior as the size of the
problem increases. Big O notation is used to describe the time complexity of an
algorithm.

We say an algorithm has a time complexity if the number of operations is
bounded by for some constant and for all greater than some constant .

They normally considered the amount of stpes that the algorithm has to perform in the
worst case scenario. E.g. sorting a list that is in reverse order.

Python for Finance

Juan F. Imbet Ph.D. 4

Examples of Big O Notation

 - Constant time, and algorithm that always takes the same amount of time to
run. E.g. accessing an element in an array.

a = range(1000000)
%timeit a[0] # O(1)
%timeit a[500000] # O(1)

Differences are due to CPU caching, practically they are the same.

66.8 ns ± 0.124 ns per loop (mean ± std. dev. of 7 runs, 10,000,000 loops each)
86.2 ns ± 0.192 ns per loop (mean ± std. dev. of 7 runs, 10,000,000 loops each)

Python for Finance

Juan F. Imbet Ph.D. 5

Examples of Big O Notation (2)

 - Linear time, an algorithm that takes steps to run. E.g. find the maximum
value in a list of numbers.

import random
random.seed(0)
a = [random.random() for _ in range(1000)]
%timeit max(a) # O(n)
a = [random.random() for _ in range(1000000)]
%timeit max(a) # O(n)

Second examples takes 1000 times longer.

12.1 µs ± 4.11 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)
12 ms ± 10.8 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Python for Finance

Juan F. Imbet Ph.D. 6

Examples of Big O Notation (3)

 - Quadratic time, an algorithm that takes steps to run. Sort a list of
numbers using bubble sort.

import random
random.seed(0)
a = [random.random() for _ in range(1000)]
%timeit bubble_sort(a) # O(n^2)
a = [random.random() for _ in range(10000)]
%timeit bubble_sort(a) # O(n^2)

Increasing the size ten times increases the time by 100 times.

37 ms ± 107 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)
4.09 s ± 24.6 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Python for Finance

Juan F. Imbet Ph.D. 7

Appendix: Bubble Sort

def bubble_sort(arr):
 n = len(arr)
 for i in range(n):
 # Last i elements are already in place
 for j in range(0, n - i - 1):
 # Traverse the array from 0 to n-i-1
 # Swap if the element found is greater than the next element
 if arr[j] > arr[j + 1]:
 arr[j], arr[j + 1] = arr[j + 1], arr[j]
 return arr

Python for Finance

Juan F. Imbet Ph.D. 8

Polynomial time

When an algorithm has a time complexity of for some constant , we say it has
polynomial time. Polynomial time algorithms are considered efficient.

Example NumPy's matrix inversion is approximately . This means that increasing
the size of the matrix by 10 times increases the time by 1000 times.

DO NOT RUN IN A SLOW COMPUTER

import numpy as np
import random
random.seed(0)
a = np.random.rand(1000, 1000)
%timeit np.linalg.inv(a) # O(n^3)
a = np.random.rand(100000, 100000)
%timeit np.linalg.inv(a) # O(n^3)

Python for Finance

Juan F. Imbet Ph.D. 9

Logarithmic time

When an algorithm has a time complexity of , we say it has logarithmic time.
Logarithmic time algorithms are considered efficient.

Example Binary search is a search algorithm that finds the position of a target value
within a sorted array. Increasing the size by 1000 barely changes the time.

a = range(1000000)
%timeit binary_search(a, 500000) # O(log n)
a = range(1000000000)
%timeit binary_search(a, 500000) # O(log n)

5.18 µs ± 9.36 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)
7.79 µs ± 72 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

Python for Finance

Juan F. Imbet Ph.D. 10

Appendix: Binary Search

def binary_search(arr, target):
 low = 0
 high = len(arr) - 1
 while low <= high:
 mid = (low + high) // 2
 if arr[mid] < target:
 low = mid + 1
 elif arr[mid] > target:
 high = mid - 1
 else:
 return mid
 return -1

Python for Finance

Juan F. Imbet Ph.D. 11

Exponential time

When an algorithm has a time complexity of , we say it has exponential time.
Exponential time algorithms are considered inefficient.

Example The Power Set problem involves finding all possible subsets of a given set,
including the empty set and the set itself. For a set with n elements, the number of
subsets is , which grows exponentially with the size of the set. An extra element
almost doubles the time.

s = range(5)
%timeit generate_power_set(s) # O(2^n)
s = range(6)
%timeit generate_power_set(s) # O(2^n)

6.05 µs ± 18.8 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)
10.7 µs ± 20.2 ns per loop (mean ± std. dev. of 7 runs, 100,000 loops each)

Python for Finance

Juan F. Imbet Ph.D. 12

Appendix: Compute the Power Set

def generate_power_set(s):
 if len(s) == 0:
 return [[]] # Base case: empty set has one subset, which is the empty set

 subsets = []
 first_element = s[0]
 remaining_elements = s[1:]

 # Recursive call to generate subsets without the first element
 subsets_without_first = generate_power_set(remaining_elements)

 # Combine subsets without the first element with subsets including the first element
 for subset in subsets_without_first:
 subsets.append(subset) # Add subset without the first element
 subsets.append([first_element] + subset) # Add subset including the first element

 return subsets

Python for Finance

Juan F. Imbet Ph.D. 13

Factorial time

When an algorithm has a time complexity of , we say it has factorial time.
Factorial time algorithms are considered inefficient.

One example of an algorithm with a time complexity of is the brute-force
solution for the permutation problem. The permutation problem involves finding all
possible permutations of a given set of elements.

s = list(range(5))
%timeit generate_permutations(s) # O(n!)
s = list(range(6))
%timeit generate_permutations(s) # O(n!)

137 µs ± 291 ns per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
822 µs ± 587 ns per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

Python for Finance

Juan F. Imbet Ph.D. 14

Appendix: Compute the Permutations

def generate_permutations(elements):
 permutations = []
 generate_permutations_recursive(elements, [], permutations)
 return permutations

def generate_permutations_recursive(elements, current_permutation, permutations):
 if len(elements) == 0:
 permutations.append(current_permutation)
 else:
 for i in range(len(elements)):
 remaining_elements = elements[:i] + elements[i+1:]
 new_permutation = current_permutation + [elements[i]]
 generate_permutations_recursive(remaining_elements, new_permutation, permutations)

Python for Finance

Juan F. Imbet Ph.D. 15

