Python for Finance

Algorithm Analysis

Juan F. Imbet Ph.D.

Python for Finance

What is an algorithm

An algorithm is a set of instructions that are used to solve a problem.
Example
Find the maximum value in a list of numbers.

1. Set the maximum value to the first value in the list.

2. For each value in the list, if the value is greater than the maximum value, then set
the maximum value to that value.

3. Return the maximum value after looking at all values in the list.

Juan F. Imbet Ph.D.

Python for Finance

How can we compare algorithms?

e Time complexity - How long does it take to run the algorithm?
e Space complexity - How much memory does the algorithm use?

e Correctness - Does the algorithm solve the problem, or does it approximate the
solution?

Juan F. Imbet Ph.D.

Python for Finance

Big O Notation

One way to compare algorithms is by understanding its behavior as the size of the
problem increases. Big O notation is used to describe the time complexity of an

algorithm.

We say an algorithm has a time complexity O(f(n)) if the number of operations is
bounded by C'f(n) for some constant C' and for all n greater than some constant n.

O(f(n)) ={g(n) : 3C > 0,3ng > 0,Vn > ny,0 < g(n) < Cf(n)}

They normally considered the amount of stpes that the algorithm has to perform in the
worst case scenario. E.g. sorting a list that is in reverse order.

Juan F. Imbet Ph.D.

Python for Finance

Examples of Big O Notation

e O(1) - Constant time, and algorithm that always takes the same amount of time to
run. E.g. accessing an element in an array.

a = range(1000000)
%timeit a[@] # 0(1)
%»timeit a[500000] # 0(1)

Differences are due to CPU caching, practically they are the same.

66.8 ns * 0.124 ns per loop (mean = std. dev. of 7 runs, 10,000,000 loops each)
86.2 ns +* 0.192 ns per loop (mean * std. dev. of 7 runs, 10,000,000 loops each)

Juan F. Imbet Ph.D.

Python for Finance

Examples of Big O Notation (2)

e O(n) - Linear time, an algorithm that takes n steps to run. E.g. find the maximum

value in a list of numbers.

import random
random.seed(0)
a = [random.random() for _ in range(1000)]

%timeit max(a) # 0O(n)
a = [random.random() for _ in range(1000000)]

%timeit max(a) # 0(n)

Second examples takes 1000 times longer.
1ms = 1000us

12.1 ps * 4.11 ns per loop (mean * std. dev. of 7 runs, 100,000 loops each)
12 ms +* 10.8 us per loop (mean * std. dev. of 7 runs, 100 loops each)

Juan F. Imbet Ph.D.

Python for Finance

Examples of Big O Notation (3)

e O(n?) - Quadratic time, an algorithm that takes n? steps to run. Sort a list of

numbers using bubble sort.

import random

random.seed(0)

a = [random.random() for _ in range(1000)]
%timeit bubble sort(a) # 0(n”"2)

a = [random.random() for _ in range(10000)]
%timeit bubble sort(a) # 0(n”"2)

Increasing the size ten times increases the time by 100 times.

37 ms = 107 ps per loop (mean * std. dev. of 7 runs, 10 loops each)

4.09 s + 24.6 ms per loop (mean * std. dev. of 7 runs, 1 loop each)

Juan E. Imbet Ph.D. 4.09s

% by

— 110.54

Python for Finance

Appendix: Bubble Sort

def bubble sort(arr):
n = len(arr)
for i in range(n):
Last 1 elements are already in place
for j in range(@, n - i - 1):
Traverse the array from © to n-i-1
Swap if the element found is greater than the next element
if arr[j] > arr[j + 1]:
arr[j], arr[j + 1] = arr[]j + 1], arr[]j]
return arr

Juan F. Imbet Ph.D.

Python for Finance

Polynomial time

When an algorithm has a time complexity of O(n*) for some constant k, we say it has
polynomial time. Polynomial time algorithms are considered efficient.

Example NumPy's matrix inversion is approximately O(n?). This means that increasing
the size of the matrix by 10 times increases the time by 1000 times.

DO NOT RUN IN A SLOW COMPUTER

import numpy as np
import random

random.seed(0)

a = np.random.rand(1000, 1000)
%timeit np.linalg.inv(a) # 0(n"3)
a = np.random.rand(100000, 100000)
%timeit np.linalg.inv(a) # 0(n"3)

Juan F. Imbet Ph.D.

Python for Finance

Logarithmic time

When an algorithm has a time complexity of O(log n), we say it has logarithmic time.
Logarithmic time algorithms are considered efficient.

Example Binary search is a search algorithm that finds the position of a target value
within a sorted array. Increasing the size by 1000 barely changes the time.

a = range(1000000)

%»timeit binary search(a, 500000) # 0(log n)
a = range(1000000000)

%»timeit binary search(a, 500000) # 0(log n)

5.18 us * 9.36 ns per loop (mean * std. dev. of 7 runs, 100,000 loops each)
7.79 ps = 72 ns per loop (mean * std. dev. of 7 runs, 100,000 loops each)

Juan F. Imbet Ph.D. 10

Python for Finance

Appendix: Binary Search

def binary search(arr, target):
low = ©
high = len(arr) - 1
while low <= high:
mid = (low + high) // 2
if arr[mid] < target:
low = mid + 1
elif arr[mid] > target:
high = mid - 1
else:
return mid
return -1

Juan F. Imbet Ph.D.

11

Python for Finance

Exponential time

When an algorithm has a time complexity of O(2™), we say it has exponential time.
Exponential time algorithms are considered inefficient.

Example The Power Set problem involves finding all possible subsets of a given set,
including the empty set and the set itself. For a set with n elements, the number of
subsets is 2", which grows exponentially with the size of the set. An extra element
almost doubles the time.

s = range(5)
%»timeit generate power_set(s) # 0(2”n)
s = range(6)

%timeit generate power_set(s) # 0(2”n)

6.05 us 18.8 ns per loop (mean std. dev. of 7 runs, 100,000 loops each)

T +
10.7 us + 20.2 ns per loop (mean * std. dev. of 7 runs, 100,000 loops each)
Juan F. Imbet Ph.D. 12

Python for Finance

Appendix: Compute the Power Set

def generate power set(s):
if len(s) == @:
return [[]] # Base case: empty set has one subset, which is the empty set

subsets = []
first element = s[0]
remaining elements = s[1:]

Recursive call to generate subsets without the first element
subsets without first = generate_power_ set(remaining elements)

Combine subsets without the first element with subsets including the first element
for subset in subsets without first:

subsets.append(subset) # Add subset without the first element
subsets.append([first_element] + subset) # Add subset including the first element

return subsets

Juan F. Imbet Ph.D.

13

Python for Finance

Factorial time

When an algorithm has a time complexity of O(n!), we say it has factorial time.

Factorial time algorithms are considered inefficient.

One example of an algorithm with a time complexity of O(n!) is the brute-force

solution for the permutation problem. The permutation problem involves finding all

possible permutations of a given set of elements.

s = list(range(5))

%»timeit generate_permutations(s) # O(n!)

s = list(range(6))

%»timeit generate_ permutations(s) # O(n!)

137 us += 291 ns per loop (mean
822 ps + 587 ns per loop (mean

Juan FSrQI?VTgr? — 6

L
T

std. dev. of 7 runs, 10,000 loops each)
std. dev. of 7 runs, 1,000 loops each)

14

Python for Finance

Appendix: Compute the Permutations

def generate permutations(elements):
permutations = []
generate_permutations recursive(elements, [], permutations)
return permutations

def generate permutations recursive(elements, current_permutation, permutations):
if len(elements) ==
permutations.append(current_permutation)
else:
for i in range(len(elements)):
remaining elements = elements[:i] + elements[i+1:]
new_permutation = current_permutation + [elements[i]]
generate_permutations recursive(remaining elements, new_permutation, permutations)

Juan F. Imbet Ph.D.

15

