
Some Advanced Topics in Python: Data Validation
and Speed.

Juan F. Imbet Ph.D.

Advanced Topics in Python

Juan F. Imbet 1

Agenda

pydantic

cython

numba

Advanced Topics in Python

Juan F. Imbet 2

Some libraries that will appear in the presentation

setuptools : a Python tool used to package, distribute, and install Python projects,
making it easier to share and install them as reusable modules or applications.

distutils : is a core Python library used to distribute and install Python packages,
providing basic functionality for packaging projects, but it lacks many of the
advanced features found in setuptools, such as dependency management and
compatibility with modern packaging standards.

Advanced Topics in Python

Juan F. Imbet 3

Advanced Topics in Python

Juan F. Imbet 4

pydantic

Using Pydantic can be incredibly beneficial in Python projects where you need to
validate, parse, and manage data consistently.

It's especially useful when dealing with external data sources, API responses, or
user input, as it helps ensure the data conforms to specified structures and types,
reducing errors and making the code more readable and maintainable.
Pydantic is a Python library used for data validation and parsing. It enforces data
types and values on Python objects through a class-based approach, making it
easy to work with structured data reliably. It leverages Python's type hints.

Advanced Topics in Python

Juan F. Imbet 5

Why use pydantic

Data Validation: Ensures that the data passed to your functions or objects meets
the type and structural requirements you've defined.

Data Parsing and Coercion: Automatically converts compatible data types, so you
don’t have to worry about converting strings to integers or parsing dates.

Type Safety: Uses type hints, helping to catch errors early and enhancing code
readability.
JSON Serialization: Easily converts data models to JSON format, making it useful
for APIs and data storage.

Code Clarity and Readability: Clearly separates the structure of your data from
business logic, making it easier to understand.

Advanced Topics in Python

Juan F. Imbet 6

Example 1: Basic Model Creation and Validation

Consider a simple model for a User with required fields for id , name , and email .
Without Pydantic, you’d need to manually check and parse each input to ensure it
meets your requirements. With Pydantic, you can define the model structure and it
handles the rest.

Advanced Topics in Python

Juan F. Imbet 7

Without Pydantic

class User:
 def __init__(self, id: int, name: str, email: str):
 if not isinstance(id, int):
 raise ValueError('id must be an integer')
 if not isinstance(name, str):
 raise ValueError('name must be a string')
 if not isinstance(email, str):
 raise ValueError('email must be a string')
 self.id = id
 self.name = name
 self.email = email

Advanced Topics in Python

Juan F. Imbet 8

Without pydantic, but using dataclasses

from dataclasses import dataclass

@dataclass
class User:
 id: int
 name: str
 email: str

Advanced Topics in Python

Juan F. Imbet 9

With Pydantic

pip install pydantic[email]

from pydantic import BaseModel, EmailStr

class User(BaseModel):
 id: int
 name: str
 email: EmailStr

user = User(id=1, name="John Doe", email="johndoe@example.com")
print(user)

try:
 invalid_user = User(id="abc", name="Jane", email="not-an-email")
except ValueError as e:
 print(e)

Advanced Topics in Python

Juan F. Imbet 10

Example 2: Data Parsing and Type Conversion

user = User(id="123", name="Alice", email="alice@example.com")
print(user)

id=123 name='Alice' email='alice@example.com'

Advanced Topics in Python

Juan F. Imbet 11

Example 3: Nested Models

class Address(BaseModel):
 street: str
 city: str
 zip_code: int

class UserWithAddress(BaseModel):
 id: int
 name: str
 email: EmailStr
 address: Address

address = Address(street="123 Main St", city="New York", zip_code=10001)
user_with_address = UserWithAddress(id=2, name="Jane Doe", email="jane@example.com", address=address)
print(user_with_address)

id=2 name='Jane Doe' email='jane@example.com' address=Address(street='123 Main St', city='New York', zip_code=10001)

Advanced Topics in Python

Juan F. Imbet 12

Example 4: JSON Serialization

import json

Convert model to JSON
user_json = user_with_address.model_dump_json()
print(user_json)

Load model from JSON
user_dict = json.loads(user_json)
user_from_json = UserWithAddress(**user_dict)
print(user_from_json)

{"id":2,"name":"Jane Doe","email":"jane@example.com","address":{"street":"123 Main St","city":"New York","zip_code":10001}}

id=2 name='Jane Doe' email='jane@example.com' address=Address(street='123 Main St', city='New York', zip_code=10001)

Advanced Topics in Python

Juan F. Imbet 13

Fields

The Field function is used to customize and add metadata to fields of models.

from pydantic import BaseModel, Field
class User(BaseModel):
 name: str = Field(default='John Doe')

Advanced Topics in Python

Juan F. Imbet 14

Numeric Constraints gt , ge , lt , le , multiple_of , allow_inf_nan .

from pydantic import BaseModel, Field

class Foo(BaseModel):
 positive: int = Field(gt=0)
 non_negative: int = Field(ge=0)
 negative: int = Field(lt=0)
 non_positive: int = Field(le=0)
 even: int = Field(multiple_of=2)
 love_for_pydantic: float = Field(allow_inf_nan=True)

foo = Foo(
 positive=1,
 non_negative=0,
 negative=-1,
 non_positive=0,
 even=2,
 love_for_pydantic=float('inf'),
)
print(foo)
"""
positive=1 non_negative=0 negative=-1 non_positive=0 even=2 love_for_pydantic=inf
"""

Advanced Topics in Python

Juan F. Imbet 15

Optional Fields

from typing import Optional

from typing_extensions import Annotated

from pydantic import BaseModel, Field

class Foo(BaseModel):
 positive: Optional[Annotated[int, Field(gt=0)]]

Advanced Topics in Python

Juan F. Imbet 16

String Constraints

from pydantic import BaseModel, Field

class Foo(BaseModel):
 short: str = Field(min_length=3)
 long: str = Field(max_length=10)
 regex: str = Field(pattern=r'^\d*$')

foo = Foo(short='foo', long='foobarbaz', regex='123')
print(foo)
#> short='foo' long='foobarbaz' regex='123'

Advanced Topics in Python

Juan F. Imbet 17

Massive applications

https://docs.pydantic.dev/latest/

pydantic is used in different applications to automatize the data validation
process and the documentation (e.g. APIs).

Advanced Topics in Python

Juan F. Imbet 18

https://docs.pydantic.dev/latest/

Advanced Topics in Python

Juan F. Imbet 19

Cython: An Overview

What is Cython?

A programming language designed to make writing C extensions for Python easier.

Aims to be a superset of Python with high-level, object-oriented, and functional
features.

superset just means that all valid Python code is valid Cython code, but Cython
adds additional syntax to allow for static type declarations.
Key feature:

Supports optional static type declarations, allowing translation into optimized
C/C++ code

Advanced Topics in Python

Juan F. Imbet 20

Getting Started

pip install Cython

Building Cython Code

Cython code must, unlike python, be compiled. This happens in two stages:

A .pyx or .py file is compiled by Cython to a .c file, containing the code of a
Python extension module.

The .c file is compiled by a C compiler to a .so file (or .pyd on Windows) which
can be import-ed directly into a Python session. setuptools takes care of this part.
Although Cython can call them for you in certain cases.

Advanced Topics in Python

Juan F. Imbet 21

The workflow

1. Think about yout function in pure Python.

example.py
def sum_of_squares(n):
 total = 0
 for i in range(1, n + 1):
 total += i * i
 return total

Advanced Topics in Python

Juan F. Imbet 22

2. Write a Cython version of the function. Add type declarations where necessary.

example.pyx
def sum_of_squares(int n):
 cdef int total = 0
 cdef int i
 for i in range(1, n + 1):
 total += i * i
 return total

Here is what is happening:

cdef int total : We declare total as an integer, making it a C integer instead of a
Python integer.

cdef int i : We declare i as an integer, making it a C integer instead of a Python
integer.

Advanced Topics in Python

Juan F. Imbet 23

3. Compile the Cython code

setup.py
from setuptools import setup
from Cython.Build import cythonize

setup(
 ext_modules=cythonize("example.pyx")
)

python setup.py build_ext --inplace

Advanced Topics in Python

Juan F. Imbet 24

Output

A file called example.c will be created in the same directory as example.pyx .

A .pyd file will be created in the same directory as example.pyx .

Test it

from example import sum_of_squares

Test the function with a large number
print(sum_of_squares(100))

Do you get a negative number when n is too large? This is because the result is too
large to fit in a 32-bit signed integer.

Advanced Topics in Python

Juan F. Imbet 25

Modify and compile again

example.pyx
def sum_of_squares(int n):
 cdef long long total = 0
 cdef int i
 for i in range(1, n + 1):
 total += i * i
 return total

Advanced Topics in Python

Juan F. Imbet 26

Performance Gain

from example import sum_of_squares as sum_of_squares_cython

def sum_of_squares(n):
 total = 0
 for i in range(1, n + 1):
 total += i * i
 return total

%timeit sum_of_squares(1000)
%timeit sum_of_squares_cython(1000)

50.4 μs ± 3.15 μs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
389 ns ± 3.14 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)

Advanced Topics in Python

Juan F. Imbet 27

Speedup
Advanced Topics in Python

Juan F. Imbet 28

Can we do better? Numba

Advanced Topics in Python

Juan F. Imbet 29

Numba is a just-in-time (JIT) compiler that translates Python functions to optimized
machine code at runtime using the industry-standard LLVM compiler library.

LLVM (Low-Level Virtual Machine) is a compiler infrastructure that provides a
collection of modular and reusable compiler and toolchain technologies.

Advanced Topics in Python

Juan F. Imbet 30

Example
from numba import jit

@jit
def sum_of_squares_numba(n):
 total = 0
 for i in range(1, n + 1):
 total += i * i
 return total

Advanced Topics in Python

Juan F. Imbet 31

What is happening behind the scenes?

By adding @jit decorators, Numba can automatically compile Python functions to
machine code, taking advantage of the CPU's vectorized instructions.

Advanced Topics in Python

Juan F. Imbet 32

Performance Gain
Advanced Topics in Python

Juan F. Imbet 33

Can we do better? Slighty, no python in @jit

from numba import njit

Advanced Topics in Python

Juan F. Imbet 34

Parallelization in the compiler. Exploit numpy and numba

Numba offers a range of options for parallelizing your code for CPUs and GPUs,
often with only minor code changes

Automatic multi-threading: NumPy array expressions have a significant amount of
implied parallelism, as operations are broadcast independently over the input
elements. ParallelAccelerator can identify this parallelism and automatically
distribute it over several threads. All we need to do is enable the parallelization
pass with parallel=True

Advanced Topics in Python

Juan F. Imbet 35

Example: Gaussian Kernel

@jit(nopython=True) == @njit

SQRT_2PI = np.sqrt(2 * np.pi)

@jit(nopython=True, parallel=True)
def gaussians(x, means, widths):
 '''Return the value of gaussian kernels.

 x - location of evaluation
 means - array of kernel means
 widths - array of kernel widths
 '''
 n = means.shape[0]
 result = np.exp(-0.5 * ((x - means) / widths)**2) / widths
 return result / SQRT_2PI / n

Advanced Topics in Python

Juan F. Imbet 36

Testing

means = np.random.uniform(-1, 1, size=1000000)
widths = np.random.uniform(0.1, 0.3, size=1000000)

gaussians(0.4, means, widths)

Parallelized vs Non-Parallelized

gaussians_nothread = jit(nopython=True)(gaussians.py_func)

%timeit gaussians_nothread(0.4, means, widths)
%timeit gaussians(0.4, means, widths)

9.62 ms ± 181 μs per loop (mean ± std. dev. of 7 runs, 1 loop each)
2.03 ms ± 51.1 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)

Advanced Topics in Python

Juan F. Imbet 37

Comparison with pure numpy

%timeit gaussians.py_func(0.4, means, widths) # compare to pure NumPy

 22.9 ms ± 808 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)

The performance ratio depends on the number of CPUs in your system, but the
multithreaded version is definitely faster than the single threaded version.

Advanced Topics in Python

Juan F. Imbet 38

Multithreading with prange()

There are other situations where you would like multithreading, but do not have a
straightforward array expression. In those cases, using prange()

Example: Approximating Pi in a square.

We can approximate the value of π by randomly sampling points in a square and
counting the fraction of points that fall within a quarter circle inscribed in the
square.

Advanced Topics in Python

Juan F. Imbet 39

Example

import random

Serial version
@jit(nopython=True)
def monte_carlo_pi_serial(nsamples):
 acc = 0
 for i in range(nsamples):
 x = random.random()
 y = random.random()
 if (x**2 + y**2) < 1.0:
 acc += 1
 return 4.0 * acc / nsamples

Advanced Topics in Python

Juan F. Imbet 40

Parallel version
@jit(nopython=True, parallel=True)
def monte_carlo_pi_parallel(nsamples):
 acc = 0
 # Only change is here
 for i in numba.prange(nsamples):
 x = random.random()
 y = random.random()
 if (x**2 + y**2) < 1.0:
 acc += 1
 return 4.0 * acc / nsamples

Advanced Topics in Python

Juan F. Imbet 41

%timeit monte_carlo_pi_serial(int(4e8))
%timeit monte_carlo_pi_parallel(int(4e8))

4.04 s ± 39.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
260 ms ± 4.52 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Advanced Topics in Python

Juan F. Imbet 42

Further Reading

SIMD (Single Instruction, Multiple Data) vectorization: Numba can automatically
vectorize your functions to take advantage of SIMD instructions on modern CPUs.
CUDA: Numba can compile Python functions to run on NVIDIA GPUs using CUDA.

Advanced Topics in Python

Juan F. Imbet 43

Libraries for the curious
DataFrames: When you have too much data.

dask : Dask is a flexible parallel computing library for analytics.

polars : Polars is a blazingly fast DataFrame library implemented in Rust and
leveraging Apache Arrow.

Advanced Topics in Python

Juan F. Imbet 44

Libraries for the curious
Create your own programming language:

llvmlite : A lightweight LLVM python binding for writing JIT compilers.

rply : A pure Python parser generator inspired by PLY (Python Lex-Yacc).

sly : Sly (Sly Lex Yacc) is a Python implementation of the lex and yacc tools for
constructing scanners and parsers.

Advanced Topics in Python

Juan F. Imbet 45

Libraries for the curious
Large Language Models:

transformers : Created by the team at Hugging Face, Transformers provides
thousands of pre-trained models for natural language processing (NLP) tasks.

Advanced Topics in Python

Juan F. Imbet 46

Libraries for the curious
Game Development:

pygame : Pygame is a set of Python modules designed for writing video games.

arcade : Arcade is an easy-to-learn Python library for creating 2D video games.

Advanced Topics in Python

Juan F. Imbet 47

