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Some libraries that will appear in the presentation

setuptools : a Python tool used to package, distribute, and install Python projects,
making it easier to share and install them as reusable modules or applications.

distutils : is a core Python library used to distribute and install Python packages,
providing basic functionality for packaging projects, but it lacks many of the
advanced features found in setuptools, such as dependency management and
compatibility with modern packaging standards.
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pydantic

Using Pydantic can be incredibly beneficial in Python projects where you need to
validate, parse, and manage data consistently.

It's especially useful when dealing with external data sources, API responses, or
user input, as it helps ensure the data conforms to specified structures and types,
reducing errors and making the code more readable and maintainable.
Pydantic is a Python library used for data validation and parsing. It enforces data
types and values on Python objects through a class-based approach, making it
easy to work with structured data reliably. It leverages Python's type hints.
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Why use pydantic

Data Validation: Ensures that the data passed to your functions or objects meets
the type and structural requirements you've defined.

Data Parsing and Coercion: Automatically converts compatible data types, so you
don’t have to worry about converting strings to integers or parsing dates.

Type Safety: Uses type hints, helping to catch errors early and enhancing code
readability.
JSON Serialization: Easily converts data models to JSON format, making it useful
for APIs and data storage.

Code Clarity and Readability: Clearly separates the structure of your data from
business logic, making it easier to understand.
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Example 1: Basic Model Creation and Validation

Consider a simple model for a User  with required fields for id , name , and email .
Without Pydantic, you’d need to manually check and parse each input to ensure it
meets your requirements. With Pydantic, you can define the model structure and it
handles the rest.
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Without Pydantic

class User:
    def __init__(self, id: int, name: str, email: str):
        if not isinstance(id, int):
            raise ValueError('id must be an integer')
        if not isinstance(name, str):
            raise ValueError('name must be a string')
        if not isinstance(email, str):
            raise ValueError('email must be a string')
        self.id = id
        self.name = name
        self.email = email

Advanced Topics in Python

Juan F. Imbet 8



Without pydantic, but using dataclasses

from dataclasses import dataclass

@dataclass
class User:
    id: int
    name: str
    email: str
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With Pydantic

pip install pydantic[email]

from pydantic import BaseModel, EmailStr

class User(BaseModel):
    id: int
    name: str
    email: EmailStr

user = User(id=1, name="John Doe", email="johndoe@example.com")
print(user)

try:
    invalid_user = User(id="abc", name="Jane", email="not-an-email")
except ValueError as e:
    print(e)
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Example 2: Data Parsing and Type Conversion

user = User(id="123", name="Alice", email="alice@example.com")
print(user)

id=123 name='Alice' email='alice@example.com'
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Example 3: Nested Models

class Address(BaseModel):
    street: str
    city: str
    zip_code: int

class UserWithAddress(BaseModel):
    id: int
    name: str
    email: EmailStr
    address: Address

address = Address(street="123 Main St", city="New York", zip_code=10001)
user_with_address = UserWithAddress(id=2, name="Jane Doe", email="jane@example.com", address=address)
print(user_with_address)

id=2 name='Jane Doe' email='jane@example.com' address=Address(street='123 Main St', city='New York', zip_code=10001)
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Example 4: JSON Serialization

import json

# Convert model to JSON
user_json = user_with_address.model_dump_json()
print(user_json)

# Load model from JSON
user_dict = json.loads(user_json)
user_from_json = UserWithAddress(**user_dict)
print(user_from_json)

{"id":2,"name":"Jane Doe","email":"jane@example.com","address":{"street":"123 Main St","city":"New York","zip_code":10001}}

id=2 name='Jane Doe' email='jane@example.com' address=Address(street='123 Main St', city='New York', zip_code=10001)
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Fields

The Field  function is used to customize and add metadata to fields of models.

from pydantic import BaseModel, Field
class User(BaseModel):
    name: str = Field(default='John Doe')
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Numeric Constraints gt , ge , lt , le , multiple_of , allow_inf_nan .

from pydantic import BaseModel, Field

class Foo(BaseModel):
    positive: int = Field(gt=0)
    non_negative: int = Field(ge=0)
    negative: int = Field(lt=0)
    non_positive: int = Field(le=0)
    even: int = Field(multiple_of=2)
    love_for_pydantic: float = Field(allow_inf_nan=True)

foo = Foo(
    positive=1,
    non_negative=0,
    negative=-1,
    non_positive=0,
    even=2,
    love_for_pydantic=float('inf'),
)
print(foo)
"""
positive=1 non_negative=0 negative=-1 non_positive=0 even=2 love_for_pydantic=inf
"""
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Optional  Fields

from typing import Optional

from typing_extensions import Annotated

from pydantic import BaseModel, Field

class Foo(BaseModel):
    positive: Optional[Annotated[int, Field(gt=0)]]
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String Constraints

from pydantic import BaseModel, Field

class Foo(BaseModel):
    short: str = Field(min_length=3)
    long: str = Field(max_length=10)
    regex: str = Field(pattern=r'^\d*$')  

foo = Foo(short='foo', long='foobarbaz', regex='123')
print(foo)
#> short='foo' long='foobarbaz' regex='123'
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Massive applications

https://docs.pydantic.dev/latest/

pydantic  is used in different applications to automatize the data validation
process and the documentation (e.g. APIs).
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Cython: An Overview

What is Cython?

A programming language designed to make writing C extensions for Python easier.

Aims to be a superset of Python with high-level, object-oriented, and functional
features.

superset just means that all valid Python code is valid Cython code, but Cython
adds additional syntax to allow for static type declarations.
Key feature:

Supports optional static type declarations, allowing translation into optimized
C/C++ code
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Getting Started

pip install Cython

Building Cython Code

Cython code must, unlike python, be compiled. This happens in two stages:

A .pyx  or .py  file is compiled by Cython to a .c  file, containing the code of a
Python extension module.

The .c  file is compiled by a C compiler to a .so  file (or .pyd  on Windows) which
can be import-ed directly into a Python session. setuptools takes care of this part.
Although Cython can call them for you in certain cases.
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The workflow

1. Think about yout function in pure Python.

# example.py
def sum_of_squares(n):
    total = 0
    for i in range(1, n + 1):
        total += i * i
    return total
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2. Write a Cython version of the function. Add type declarations where necessary.

# example.pyx
def sum_of_squares(int n):
    cdef int total = 0
    cdef int i
    for i in range(1, n + 1):
        total += i * i
    return total

Here is what is happening:

cdef int total : We declare total as an integer, making it a C integer instead of a
Python integer.

cdef int i : We declare i as an integer, making it a C integer instead of a Python
integer.
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3. Compile the Cython code

# setup.py
from setuptools import setup
from Cython.Build import cythonize

setup(
    ext_modules=cythonize("example.pyx")
)

python setup.py build_ext --inplace
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Output

A file called example.c  will be created in the same directory as example.pyx .

A .pyd  file will be created in the same directory as example.pyx .

Test it

from example import sum_of_squares

# Test the function with a large number
print(sum_of_squares(100))

Do you get a negative number when n  is too large? This is because the result is too
large to fit in a 32-bit signed integer.
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Modify and compile again

# example.pyx
def sum_of_squares(int n):
    cdef long long total = 0
    cdef int i
    for i in range(1, n + 1):
        total += i * i
    return total
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Performance Gain

from example import sum_of_squares as sum_of_squares_cython

def sum_of_squares(n):
    total = 0
    for i in range(1, n + 1):
        total += i * i
    return total

%timeit sum_of_squares(1000)
%timeit sum_of_squares_cython(1000)

50.4 μs ± 3.15 μs per loop (mean ± std. dev. of 7 runs, 10,000 loops each)
389 ns ± 3.14 ns per loop (mean ± std. dev. of 7 runs, 1,000,000 loops each)

Advanced Topics in Python

Juan F. Imbet 27



Speedup
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Can we do better? Numba
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Numba is a just-in-time (JIT) compiler that translates Python functions to optimized
machine code at runtime using the industry-standard LLVM compiler library.

LLVM (Low-Level Virtual Machine) is a compiler infrastructure that provides a
collection of modular and reusable compiler and toolchain technologies.
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Example
from numba import jit

@jit
def sum_of_squares_numba(n):
    total = 0
    for i in range(1, n + 1):
        total += i * i
    return total
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What is happening behind the scenes?

By adding @jit decorators, Numba can automatically compile Python functions to
machine code, taking advantage of the CPU's vectorized instructions.
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Performance Gain
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Can we do better? Slighty, no python in @jit

from numba import njit
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Parallelization in the compiler. Exploit numpy  and numba

Numba offers a range of options for parallelizing your code for CPUs and GPUs,
often with only minor code changes

Automatic multi-threading: NumPy array expressions have a significant amount of
implied parallelism, as operations are broadcast independently over the input
elements. ParallelAccelerator can identify this parallelism and automatically
distribute it over several threads. All we need to do is enable the parallelization
pass with parallel=True
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Example: Gaussian Kernel

@jit(nopython=True) == @njit

SQRT_2PI = np.sqrt(2 * np.pi)

@jit(nopython=True, parallel=True)
def gaussians(x, means, widths):
    '''Return the value of gaussian kernels.
    
    x - location of evaluation
    means - array of kernel means
    widths - array of kernel widths
    '''
    n = means.shape[0]
    result = np.exp( -0.5 * ((x - means) / widths)**2 ) / widths
    return result / SQRT_2PI / n
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Testing

means = np.random.uniform(-1, 1, size=1000000)
widths = np.random.uniform(0.1, 0.3, size=1000000)

gaussians(0.4, means, widths)

Parallelized vs Non-Parallelized

gaussians_nothread = jit(nopython=True)(gaussians.py_func)

%timeit gaussians_nothread(0.4, means, widths)
%timeit gaussians(0.4, means, widths)

9.62 ms ± 181 μs per loop (mean ± std. dev. of 7 runs, 1 loop each)
2.03 ms ± 51.1 μs per loop (mean ± std. dev. of 7 runs, 100 loops each)
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Comparison with pure numpy

%timeit gaussians.py_func(0.4, means, widths) # compare to pure NumPy

 22.9 ms ± 808 μs per loop (mean ± std. dev. of 7 runs, 10 loops each)

The performance ratio depends on the number of CPUs in your system, but the
multithreaded version is definitely faster than the single threaded version.
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Multithreading with prange()

There are other situations where you would like multithreading, but do not have a
straightforward array expression. In those cases, using prange()

Example: Approximating Pi in a square.

We can approximate the value of π by randomly sampling points in a square and
counting the fraction of points that fall within a quarter circle inscribed in the
square.
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Example

import random

# Serial version
@jit(nopython=True)
def monte_carlo_pi_serial(nsamples):
    acc = 0
    for i in range(nsamples):
        x = random.random()
        y = random.random()
        if (x**2 + y**2) < 1.0:
            acc += 1
    return 4.0 * acc / nsamples
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# Parallel version
@jit(nopython=True, parallel=True)
def monte_carlo_pi_parallel(nsamples):
    acc = 0
    # Only change is here
    for i in numba.prange(nsamples):
        x = random.random()
        y = random.random()
        if (x**2 + y**2) < 1.0:
            acc += 1
    return 4.0 * acc / nsamples
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%timeit monte_carlo_pi_serial(int(4e8))
%timeit monte_carlo_pi_parallel(int(4e8))

4.04 s ± 39.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
260 ms ± 4.52 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
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Further Reading

SIMD (Single Instruction, Multiple Data) vectorization: Numba can automatically
vectorize your functions to take advantage of SIMD instructions on modern CPUs.
CUDA: Numba can compile Python functions to run on NVIDIA GPUs using CUDA.
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Libraries for the curious
DataFrames: When you have too much data.

dask : Dask is a flexible parallel computing library for analytics.

polars : Polars is a blazingly fast DataFrame library implemented in Rust and
leveraging Apache Arrow.
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Libraries for the curious
Create your own programming language:

llvmlite : A lightweight LLVM python binding for writing JIT compilers.

rply : A pure Python parser generator inspired by PLY (Python Lex-Yacc).

sly : Sly (Sly Lex Yacc) is a Python implementation of the lex and yacc tools for
constructing scanners and parsers.
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Libraries for the curious
Large Language Models:

transformers : Created by the team at Hugging Face, Transformers provides
thousands of pre-trained models for natural language processing (NLP) tasks.
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Libraries for the curious
Game Development:

pygame : Pygame is a set of Python modules designed for writing video games.

arcade : Arcade is an easy-to-learn Python library for creating 2D video games.
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