
Introduction to Blockchain using Python

Juan F. Imbet Ph.D.

Paris Dauphine University - PSL

Python for Finance

Juan F. Imbet Ph.D. 1

What is a Blockchain?

A blockchain is a shared ledger of transactions between parties in a network not
controlled by a single central authority.

You can think of a ledger like a record book: it records and stores all transactions
between users in chronological order.

Instead of one authority controlling this ledger (like a bank), an identical copy of
the ledger is held by all users on the network, called nodes.

Python for Finance

Juan F. Imbet Ph.D. 2

Structure of a Blockchain Block

Each block in a blockchain contains:
Data: Details of transactions (e.g., sender, receiver, amount).
Previous Hash: A reference to the hash of the previous block.

Hash: A unique fingerprint for the current block.

Timestamp: The time when the block was created.

Blocks are linked together by their hashes, forming a chain.

Python for Finance

Juan F. Imbet Ph.D. 3

How Does Blockchain Ensure Security?

Blockchain uses cryptographic hashing to secure data.

A hash function takes input data and produces a fixed-size alphanumeric string.

Even a slight change in the input produces a completely different hash.

This makes it nearly impossible to alter the data without being detected.

Python for Finance

Juan F. Imbet Ph.D. 4

Consensus Mechanisms

In a blockchain, all nodes must agree on the validity of transactions.

Two popular consensus mechanisms are:
Proof of Work (PoW): Solving complex mathematical puzzles to validate
transactions.

Proof of Stake (PoS): Validators are chosen based on the number of coins they
hold and are willing to "stake" as collateral.

Consensus ensures that the blockchain remains consistent across all nodes.

Python for Finance

Juan F. Imbet Ph.D. 5

Centralised vs. Decentralised Ledgers
Python for Finance

Juan F. Imbet Ph.D. 6

How does the ledger look like?

All copies of one document are spread among users and they are constantly and
automatically synchronised, hence identical at all times.

The ledger is a list of all transactions that consist of a chain of blocks.

A block is comprised of a group of transactions from the same time period, like a
page from a record book.

Blocks have a unique ID represented as the hash of its own code (or something
that makes them unique).

Along with its own hash, each block stores the hash of the block before it.

Python for Finance

Juan F. Imbet Ph.D. 7

Hash

A hash is a unique string of letters and numbers created from text using a
mathematical formula. Blocks are therefore “chained” together making the ledger
(almost) immutable or unable to be changed. To add a block, it may first need to
be mined and then approved by a number of notes through a consensus
mechanism.

Python for Finance

Juan F. Imbet Ph.D. 8

How does a block in a blockchain look like? E.g. Ethereum (a test
network)

pip install web3
pip install "web3[tester]"

from web3 import Web3, EthereumTesterProvider
w3 = Web3(EthereumTesterProvider())
w3.is_connected()

True

Python for Finance

Juan F. Imbet Ph.D. 9

Retrieving the latest block

last_block = w3.eth.get_block('latest')
type(last_block)

The interface provides a data structure that inherits from a dictionary.

<class 'web3.datastructures.AttributeDict'>

Python for Finance

Juan F. Imbet Ph.D. 10

Block attributes

Pretty print the block attributes to a file

import pprint
with open('block.txt', 'w') as f:
 pprint.pprint(last_block.keys(), f)

Python for Finance

Juan F. Imbet Ph.D. 11

Peak

KeysView(
 AttributeDict(
 {'number': 0,
 'hash': HexBytes('0x3351c94e692da67b54613efa25fd3a9a74ec4a7ba362c6815e628496cbe93523'),
 'parentHash': HexBytes('0x00'),
 'nonce': HexBytes('0x0000000000000000'),
 'sha3Uncles': HexBytes('0x1dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d49347'),
 'logsBloom': HexBytes('0x00'),
 'transactionsRoot': HexBytes('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'),
 'receiptsRoot': HexBytes('0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421'),
 'stateRoot': HexBytes('0xf1588db9a9f1ed91effabdec31f93cb4212b008c8b8ba047fd55fabebf6fd727'),
 'miner': '0x00',
 'difficulty': 0,

Python for Finance

Juan F. Imbet Ph.D. 12

Get the real one

If we're interested in getting all blocks from genesis, we'll need to communicate
with an Archive node.

At the current time of this writing, the full state of the Ethereum blockchain takes
around 10,000 GB of storage (~11TB).

Luckily, we don't need to manage this infrastructure ourselves, and we can use
QuickNode (or another provider) to boot up an Archive node.

Python for Finance

Juan F. Imbet Ph.D. 13

Further Reading (you need to sign up)

https://www.quicknode.com/guides/ethereum-development/transactions/how-to-
fetch-transaction-history-on-ethereum-using-web3py

Python for Finance

Juan F. Imbet Ph.D. 14

https://www.quicknode.com/guides/ethereum-development/transactions/how-to-fetch-transaction-history-on-ethereum-using-web3py
https://www.quicknode.com/guides/ethereum-development/transactions/how-to-fetch-transaction-history-on-ethereum-using-web3py

Different Types of Blockchains

READ WRITE COMMIT EXAMPLE

OPEN Permissionless Anyone Anyone Anyone
Bitcoin,
Ethereum

OPEN Permissioned Anyone
Authorised
participants

Subset of
participants

Supply
chain

CLOSED Consortium
Authorised
participants

Authorised
participants

Authorised
participants

Shared
Banking

CLOSED
Private
Permissioned

Authorised
participants

Network
operator

Network
operator

Shared
Banking

Python for Finance

Juan F. Imbet Ph.D. 15

The Layers of Blockchain

Because blockchains work as a distributed database, they can also work as a
distributed computing system.

Protocol Layer: The rules that govern the network.

Network Layer: The network of nodes that communicate with each other.
Application Layer: The applications that run on top of the network.

Python for Finance

Juan F. Imbet Ph.D. 16

Characteristics of Blockchain

Distributed: The main ledger is maintained and held by all nodes in the network.
No central authority holds or updates the ledger, rather each node independently
constructs its own record by processing every block, deciding if its valid, and voting
via the consensus mechanism on their conclusion.

Immutable: Once a block is added to the chain, it cannot be altered. This is
because each block contains a hash of the previous block, so if a block is altered,
the hash of the block will change, and the chain will be broken.

Python for Finance

Juan F. Imbet Ph.D. 17

Characteristics of Blockchain

Agreed by consensus: No block can be added to the ledger without approval from
specified nodes in the network.
Rules regarding how this consent is collected are called consensus mechanisms.

Consensus protocols are crucial in ensuring that every block is valid and that all
participants agree and maintain the same version of the ledger.

Python for Finance

Juan F. Imbet Ph.D. 18

Missconceptions

Pseudonymous: Blockchain does not allow its users to be totally anonymous. User
identities are anonymous but their accounts are not, as all of their transactions are
visible to all other users.

Python for Finance

Juan F. Imbet Ph.D. 19

Mining

For some blockchains, in order to add blocks to the ledger, transfers must go
through a mining process.

Mining is a way of adding transaction records, via blocks, onto a public ledger.

Miners are nodes in the network that ensure the transactions in the block are valid.
Specifically, they ensure that senders have not already used the funds they want to
send to receivers.

Once miners finish the verification, they have to ask the network for consent to add
the new block to the ledger.

In order to do so, they have to follow the consensus mechanisms chosen for the
platform.

Python for Finance

Juan F. Imbet Ph.D. 20

Consensus

Agreement among the nodes regarding the "state" of the ledger is essential for the
function of the blockchain ledger.

The bitcoin blockchain uses a consensus model called Proof of Work, which
requires the miner to compete against other miners to create and broadcast blocks
for approval.

Proof of work (PoW) describes a system that requires a not-insignificant but
feasible amount of effort in order to deter frivolous or malicious uses of computing
power, such as sending spam emails or launching denial of service attacks.

Python for Finance

Juan F. Imbet Ph.D. 21

Example of PoW

PoW requires nodes on a network to provide evidence that they have expended
computational power (i.e. work) in order to achieve consensus in a decentralized
manner and to prevent bad actors from overtaking the network.

The work itself is arbitrary. For Bitcoin, it involves iterations of SHA-256 hashing
algorithms.

Proof of work requires a computer to randomly engage in hashing functions until it
arrives at an output with the correct minimum amount of leading zeroes.

For example, the hash for block #660000, mined on December 4, 2020
is 00000000000000000008eddcaf078f12c69a439dde30dbb5aac3d9d94e9c18f6.
The block reward for that successful hash was 6.25 BTC.

Python for Finance

Juan F. Imbet Ph.D. 22

Digital Assets

Tokens Tokenization describes the process of transferring rights from a real world
asset into a digital representation – or token – on the blockchain. Being in
possession of that digital token then gives you the right to that asset and the
ability to trade and track it digitally.

Python for Finance

Juan F. Imbet Ph.D. 23

Types of digital assets

Payment tokens: Commonly referred to as cryptocurrencies, these tokens are used
as a medium of exchange and store of value.
Utility tokens: These tokens are used to access a specific product or service. (similar
to a gift card)

Security tokens: These tokens represent ownership of an asset, such as real estate
or company shares.

Python for Finance

Juan F. Imbet Ph.D. 24

Relevance in Finance (Banking)

Banks are essential intermediaries for financial transactions. In many cases, they
represent the only trusted third party.

However given the bank stores all data on a single centralised ledger, it therefore
creates a single point of failure, whereby hackers or malicious actors can direct all
their efforts for cyberattacks or manipulation to this specific entity.

Python for Finance

Juan F. Imbet Ph.D. 25

Blockchain beyond traditional finance.

Due diligence in supply chains: Distributed ledgers can be used to track the
provenance of goods, ensuring that they are ethically sourced and produced.
Consumers could scan a QR code on a product to see its entire journey from
production to sale (e.g. see really what's in your McDonald's chicken nuggets).

Healthcare: Provide more robust patient healthcare information across hospitals,
clinics, and pharmacies.
Energy: Decentralised peer-to-peer energy trading, allowing consumers to buy and
sell energy directly from each other.

Python for Finance

Juan F. Imbet Ph.D. 26

Ethereum: A Programmable Blockchain

Although the concept of the blockchain was born out of the research into
cryptocurrencies, they are much more powerful than just that.

Blockchain essentially encodes one thing: state transitions. Whenever someone
sends a coin in Bitcoin to someone else, the global state of the blockchain is
changed.Moreover, it provides a crypographically secure way to performing these
updates in the ledger.

An interesting way to think of a blockchain is as a never-halting computation: new
instructions and data are fetched from a pool, the pool of unconfirmed
transactions. Each result is recorded in the blockchain, which forms the state of the
computation. Any single snapshot of the blockchain is the state of the computation
at that point.

Python for Finance

Juan F. Imbet Ph.D. 27

Transactions as computations

Python for Finance

Juan F. Imbet Ph.D. 28

Blockchains and software

All software systems deal in some way or another with state transitions. So what if
we could generalize the state transitions inside a blockchain into any software we
could think of.

Blockchains deal with reaching consensus for decentralized computations, it does
not matter what those computations are. And this is exactly what the Ethereum
network brings to the table: a blockchain that can perform any computation as part
of a transaction.

Python for Finance

Juan F. Imbet Ph.D. 29

Transactions as computations
Python for Finance

Juan F. Imbet Ph.D. 30

What computations make sense? Examples:

Secure deposits that get returned to the payer if conditions are met (or not).
Money that cannot be spent unless a certain number of users agree to spending it.

Money that can only be spent after producing external data that satisfies rules set.

Python for Finance

Juan F. Imbet Ph.D. 31

Some Technical Details

Ethereum is Turing complete, meaning that it can run any computation that can be
expressed in code.
A Turing complete system is one that can solve any computational problem given
enough time and memory.

Every machine capable of running a Turing complete language has one big
problem: The Halting Problem.

Python for Finance

Juan F. Imbet Ph.D. 32

The Halting Problem

Formulated by Alan Turing in 1936, the Halting Problem is a fundamental problem
in computer science.

It states that it is impossible to determine generally whether a program will halt
(stop running) or run forever.

Its proof is related to the incompleteness theorem of Gödel, which states that there
are true statements that cannot be proven. It is also related to the
Entscheidungsproblem, which is the problem of deciding whether a given
statement is provable from an axiomatic system.

Python for Finance

Juan F. Imbet Ph.D. 33

Why is the Halting Problem important for Programmable
Blockchains?

A malicious actor could create some code in the blockchain that never halts,
consuming all the resources of the network.

Python for Finance

Juan F. Imbet Ph.D. 34

Ether

Although Ethereum brings general computations to the blockchain, it still uses a
"coin".

Since computation is costly, and it is in fact rewarded by giving nodes that produce
blocks ether, what better way to limit computations than by requiring ether for
running them.

Thus Ethereum solves the problem of denial of service attacks through malicious
(or bugged) scripts that run forever. Every time a script is run, the user requesting
the script to run must set a limit of ether to spend in it.

Python for Finance

Juan F. Imbet Ph.D. 35

Smart Contracts

Smart contracts are the key element of Ethereum. In them any algorithm can be
encoded. Smart contracts can carry arbitrary state and can perform any arbitrary
computations. They are even able to call other smart contracts. This gives the
scripting facilities of Ethereum tremendous flexibility.

When a block is created, in contrast to Bitcoin, Ethereum follows a different pattern
for selecting which blocks get added to the valid blockchain.

For consensus, Ethereum follows a protocol called GHOST, (Greedy Heaviest
Observed Subtree).
An important aspect of how smart contracts work in Ethereum is that they have
their own address in the blockchain. In other words, contract code is not carried
inside each transaction that makes use of it. This would quickly become unwieldy.
Instead, a node can create a special transaction that assigns an address to a
contract.

Python for Finance

Juan F. Imbet Ph.D. 36

Apps on Ethereum (DApps)

No Owners: Once deployed to Ethreum, dapp code can't be taken down. And
anyone can use the dapp's features. Even if the team behind the dapp disbanded
you could still use it. Once on Ethereum, it stays there.

Free from censorship: No body can be blocked from using a dapp or submitting
transactions. If Twitter was on Ethereum no one could block an account.

Built-in payments: Ethereum uses by default ETH payments.

Open Source: Most code is maintained and tested by large communities.
Anonymous Login: Your Ethereum wallet (account) is the login.

Safer than current Web applications: Protocols backed with stronger cryptography.

No down time: An app will only go down if Ethereum goes down.

Python for Finance

Juan F. Imbet Ph.D. 37

How dapps work

Dapps have their backend code (smart contracts) running on a decentralized
network and not a centralized server. They use the Ethereum blockchain for data
storage and smart contracts for their app logic.
A smart contract is like a set of rules that live on-chain for all to see and run exactly
according to those rules. Imagine a vending machine: if you supply it with enough
funds and the right selection, you'll get the item you want. And like vending
machines, smart contracts can hold funds much like your Ethereum account. This
allows code to mediate agreements and transactions.

Python for Finance

Juan F. Imbet Ph.D. 38

Dapps and Web 3.0

Web 1.0: Internet used for sharing information through the http protocol. Few
information providers to a growing audience. Mostly static content.
Web 2.0: Ability to let users share and modify data. Success for large tech
companies e.g. Google, Amazon, Airbnb...

Web 3.0: Internet applications running on a block-chain. Less reliance on large
database and server providers. The front end of these applications are very similar
to modern web applications (except authentication),while the backend uses smart-
contracts as their "programming language", usually coded in a programming
language called Solidity.

Python for Finance

Juan F. Imbet Ph.D. 39

NFTs

Non-fungible tokens (NFTs) are a type of digital asset that represents ownership or
proof of authenticity of a unique item or piece of content using blockchain
technology.

Unlike cryptocurrencies, they cannot be traded or exchanged at equivalency.

NFTs can also be used to represent individuals' identities, property rights, and
more.

Much of the current market for NFTs is centered around collectibles, such as digital
artwork, sports cards, and rarities.

Applications outside finance, e.g. Passports, academic credentials, tickets, and
voting (more secure than the current electronic voting).

Python for Finance

Juan F. Imbet Ph.D. 40

Solidity (for the curious reader)

Solidity is a statically-typed programming language designed for developing smart
contracts that run on the Ethereum Virtual Machine (EVM).

It is influenced by C++, Python, and JavaScript and is designed to target the EVM.

https://soliditylang.org/

Python for Finance

Juan F. Imbet Ph.D. 41

https://soliditylang.org/

Example using Python

Blockchain as a data structure.

Python for Finance

Juan F. Imbet Ph.D. 42

The hashlib module

Python's hashlib module provides a common interface to many secure hash and
message digest algorithms.

It is part of the cpython standard library and is used to generate secure hashes of
data. (C++ code that can be called directly from Python).

SHA- is a family of cryptographic hash functions, each with a different bit length.
SHA-256 is a 256-bit hash function that is widely used in blockchain technology.

Python for Finance

Juan F. Imbet Ph.D. 43

The SHA algorithms

Developed by the National Security Agency (NSA) in the United States, the Secure
Hash Algorithms are a family of cryptographic hash functions. Published by the
National Institute of Standards and Technology (NIST) as a U.S. Federal Information
Processing Standard (FIPS), the algorithms are used to secure data and ensure its
integrity.

The whole idea behind is to make a function that is easy to compute in one
direction but hard (almost impossible) to reverse.

One consequence of this is that the function is highly discontinuous, meaning that
a small change in the input will result in a large change in the output.

Python for Finance

Juan F. Imbet Ph.D. 44

Implementation in python

import hashlib
has = lambda x: hashlib.sha256(x.encode()).hexdigest()
has('hello')
has('helo')

'2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824'
'f4e454f802b88d2f64168ff1742e8cf413fd677d38b87cbefb45821f8981b912'

Python for Finance

Juan F. Imbet Ph.D. 45

Application: Building a Simple Blockchain

We will build a simple blockchain in Python with the following structure:
Define a Block class that contains data, previous hash, timestamp, and hash.

Define a Blockchain class that manages a list of blocks.

Add functionality to create new blocks and validate the integrity of the
blockchain.

Python for Finance

Juan F. Imbet Ph.D. 46

Python Code: Block Class

import hashlib
import time
from dataclasses import dataclass, field

@dataclass
class Block:
 data: str
 previous_hash: str = ''
 timestamp: float = field(default_factory=time.time)
 hash: str = field(init=False)

 def __post_init__(self):
 # Automatically calculate the hash after initialization
 self.hash = self.calculate_hash

 @property
 def calculate_hash(self):
 return hashlib.sha256(
 (str(self.timestamp) + self.data + self.previous_hash).encode()
).hexdigest()

Python for Finance

Juan F. Imbet Ph.D. 47

Explanation:

@dataclass : This decorator automatically generates the __init__ , __repr__ , and
other methods based on the class attributes.

field() : Used for timestamp with default_factory to set its default value to the
current time.

init=False : For the hash field, so it isn't required during initialization and is
computed in __post_init__ .
__post_init__() : A special method in dataclasses that runs immediately after the

object is initialized, used here to calculate the hash.

Python for Finance

Juan F. Imbet Ph.D. 48

Python Code: Blockchain Class

from dataclasses import dataclass, field

@dataclass
class Blockchain:
 chain: list = field(default_factory=list)

 def __post_init__(self):
 # Initialize the chain with the genesis block
 self.chain.append(self.create_genesis_block())

 def create_genesis_block(self):
 return Block('Genesis Block', '0')

 def add_block(self, data: str):
 previous_block = self.chain[-1]
 new_block = Block(data, previous_block.hash)
 self.chain.append(new_block)

Python for Finance

Juan F. Imbet Ph.D. 49

Verifying Blockchain Integrity

To verify the integrity of a blockchain:
Iterate through the chain.

Check if each block's previous_hash matches the hash of the preceding
block.
If any mismatch is found, the blockchain is compromised.

def is_chain_valid(self):
 for i in range(1, len(self.chain)):
 current_block = self.chain[i]
 previous_block = self.chain[i - 1]
 if current_block.previous_hash != previous_block.hash:
 return False
 return True

Python for Finance

Juan F. Imbet Ph.D. 50

Python for Finance

Juan F. Imbet Ph.D. 51

