
Version Control using GitHub and Python.

Juan F. Imbet

Paris Dauphine University

juan.imbet@dauphine.psl.eu
jfimbett.github.io

Version Control using GitHub and Python

Juan F. Imbet 1

mailto:juan.imbet@dauphine.psl.eu
file:///C:/Users/jfimb/Dropbox/jfimbett.github.io/teaching/python_m2/jfimbett.github.io

GitHub

Github is a cloud-based platform to store and share code.

Showcase or share your work.

Track and manage changes to your code over time.

Let others review your code, and make suggestions to improve it.

Collaborate on a shared project, without worrying that your changes will impact
the work of your collaborators before you're ready to integrate them

Version Control using GitHub and Python

Juan F. Imbet 2

Git

Git is a version control system. It is useful when you and other people are working on
the same project. It was created by Linus Torvalds in 2005 (the creator of Linux).
Typically, to do this in a Git-based workflow, you would:

Create a branch off from the main copy of files that you (and your collaborators)
are working on.

Make edits to the files independently and safely on your own personal branch.
Let Git intelligently merge your specific changes back into the main copy of files, so
that your changes don't impact other people's updates.

Let Git keep track of your and other people's changes, so you all stay working on
the most up-to-date version of the project

Version Control using GitHub and Python

Juan F. Imbet 3

How do Git and GitHub work together?

When you upload files to GitHub, you'll store them in a "Git repository." This means
that when you make changes (or "commits") to your files in GitHub, Git will
automatically start to track and manage your changes.

Once you start to collaborate with others and all need to work on the same repository
at the same time, you’ll continually:

Pull all the latest changes made by your collaborators from the remote repository
on GitHub.
Push back your own changes to the same remote repository on GitHub.

Version Control using GitHub and Python

Juan F. Imbet 4

Requirements

Create an account on GitHub

Install Git on your computer.

Connect to GitHub

Install the GitHub CLI

Version Control using GitHub and Python

Juan F. Imbet 5

https://github.com/
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://docs.github.com/en/get-started/using-github/connecting-to-github
https://github.com/cli/cli

Communicating on GitHub
GitHub provides built-in collaborative communication tools allowing you to interact
closely with your community. E.g. you can follow the last updates of your favorite
library, or even your favorite programming language.

Version Control using GitHub and Python

Juan F. Imbet 6

GitHub Issues

Are useful for discussing specific details of a project such as bug reports, planned
improvements and feedback.
Are specific to a repository, and usually have a clear owner.

Are often referred to as GitHub's bug-tracking system.

Pull Requests

Allow you to propose specific changes
Allow you to comment directly on proposed changes suggested by others

Are specific to a repository

Provide a collaborative experience outside the codebase, allowing the
brainstorming of ideas, and the creation of a community knowledge base

Version Control using GitHub and Python

Juan F. Imbet 7

GitHub Discussions

Are like a forum, and are best used for open-form ideas and discussions where
collaboration is important.
May span many repositories

Version Control using GitHub and Python

Juan F. Imbet 8

What should I use?

Version Control using GitHub and Python

Juan F. Imbet 9

Issues

I want to keep track of tasks, enhancements and bugs.

I want to file a bug report.

I want to share feedback about a specific feature.

I want to ask a question about files in the repository.

Version Control using GitHub and Python

Juan F. Imbet 10

Version Control using GitHub and Python

Juan F. Imbet 11

Scenarios for Pull Requests

I want to fix a typo in a repository.

I want to make changes to a repository.

I want to make changes to fix an issue.

I want to comment on changes suggested by others.

Version Control using GitHub and Python

Juan F. Imbet 12

Version Control using GitHub and Python

Juan F. Imbet 13

Version Control using GitHub and Python

Juan F. Imbet 14

Scenarios for Discussions

I have a question that's not necessarily related to specific files in the repository.

I want to share news with my collaborators, or my team.

I want to start or participate in an open-ended conversation.

I want to make an announcement to my community.

Version Control using GitHub and Python

Juan F. Imbet 15

Feature preview

GitHub's release cycle

GitHub's products and features can go through multiple release phases.

Alpha: The product or feature is under heavy development and often has changing
requirements and scope

Beta: The product or feature is in a more stable state and is available to a limited
number of users

General Availability (GA): The product or feature is fully released and available to all
users

Github has a feature preview that allows you to try out new features of a repository
before they are released to the general public.

Version Control using GitHub and Python

Juan F. Imbet 16

https://docs.github.com/en/get-started/using-github/exploring-early-access-releases-with-feature-preview

Interacting with GitHub

Browser (only use one of the following)
Apple Safari
Google Chrome

Microsoft Edge

Mozilla Firefox

GitHub Mobile
Command Line Interface (CLI)

I recommend to do (almost) everything from the command line.

Version Control using GitHub and Python

Juan F. Imbet 17

Writing on GitHub: Markdown

Markdown is an easy-to-read, easy-to-write language for formatting plain text. You
can use Markdown syntax, along with some additional HTML tags, to format your
writing on GitHub, in places like repository READMEs and comments on pull
requests and issues.

These slides are written in Marp, a language based on Markdown for slides..

Markdown files are saved with the .md extension. The most common file in any
repository is the README.md file.

You can use HTML tags in Markdown files for more complex formatting.

Click here for a guide on how to write in Markdown.

Version Control using GitHub and Python

Juan F. Imbet 18

https://docs.github.com/en/get-started/writing-on-github/getting-started-with-writing-and-formatting-on-github/basic-writing-and-formatting-syntax

Basic Markdown Syntax

Heading 1
Heading 2
Heading 3

italic
bold
bold italic

* List item 1
1. List item 2

Plain text

Version Control using GitHub and Python

Juan F. Imbet 19

Heading 1

Heading 2

Heading 3

italic
bold
bold italic

List item 1

1. List item 2

Plain text

Version Control using GitHub and Python

Juan F. Imbet 20

Finding ways to contribute to open source on GitHub

Discovering relevant projects github.com/topics/<topic>

Finding good first issues github.com/<owner>/<repository>/contribute .

Opening an issue.

Version Control using GitHub and Python

Juan F. Imbet 21

Let's get started

Version Control using GitHub and Python

Juan F. Imbet 22

Main commands, git and gh

git is the command line tool for Git, this is the command we will use more often.

gh is the command line tool for GitHub, it is useful to create repositories and
manage issues.

Version Control using GitHub and Python

Juan F. Imbet 23

Command Line Interface

git --version
git config --global user.name "Juan Imbett"
git config user.name
git config --global user.email "jfimbett@gmail.com"
git config --global user.email

git version 2.44.0.windows.1
Juan Imbett
jfimbett@gmail.com

Make sure you are connected to GitHub

gh auth login

Version Control using GitHub and Python

Juan F. Imbet 24

HTTPS and SSH

HTTPS is the default way to connect to GitHub. It stands for HyperText Transfer
Protocol Secure. It is a secure way to transfer data between your computer and
GitHub.

SSH stands for Secure Shell. It is a secure way to connect to GitHub. It is more
secure than HTTPS, but it requires more configuration. Since we do not have
nuclear codes in our repositories, we will use HTTPS.

Version Control using GitHub and Python

Juan F. Imbet 25

Step 3: Create a Local Repository

cd
mkdir hello-world
cd hello-world
git init # creates .git folder

Initialized empty Git repository in C:/Users/jfimb/Documents/hello-world/.git/

Version Control using GitHub and Python

Juan F. Imbet 26

Step 4: Add Files to the Repository

Windows

echo # My First Commit >> README.md
more README.md
git add .
git commit -m "First commit"

iOS

echo "# My First Commit" >> README.md
cat README.md
git add .
git commit -m "First commit"

[master (root-commit) eaef7df] First commit
 1 file changed, 1 insertion(+)
 create mode 100644 README.md

Version Control using GitHub and Python

Juan F. Imbet 27

Step 5: Create a Remote Repository

gh repo create hello-world --public --source=.

✓ Created repository jfimbett/hello-world on GitHub
 https://github.com/jfimbett/hello-world
✓ Added remote https://github.com/jfimbett/hello-world.git

Version Control using GitHub and Python

Juan F. Imbet 28

Step 6: Push the Local Repository to GitHub

git push -u origin master

Where origin is the name of the remote repository and master is the name of the
branch (more on this later)

Version Control using GitHub and Python

Juan F. Imbet 29

Step 7: Check the Repository on GitHub

Version Control using GitHub and Python

Juan F. Imbet 30

Step 8: Pulling changes from GitHub

Go directly to the GitHub website and make a change to the README.md file.
Pull the changes to your local repository.

git pull origin master

remote: Enumerating objects: 5, done.
remote: Counting objects: 100% (5/5), done.
remote: Total 3 (delta 0), reused 0 (delta 0), pack-reused 0 (from 0)
Unpacking objects: 100% (3/3), 923 bytes | 115.00 KiB/s, done.
From https://github.com/jfimbett/hello-world
 * branch master -> FETCH_HEAD
 8db2404..b1066dc master -> origin/master
Updating 8db2404..b1066dc
Fast-forward
 README.md | 2 ++
 1 file changed, 2 insertions(+)

Version Control using GitHub and Python

Juan F. Imbet 31

Step 9: Create a Branch

A branch is a copy of the main repository. It is useful when you want to work on a
feature without affecting the main repository.

Let's create a branch called feature1 , create a python file and push it to the
remote repository.

git checkout -b feature1 # creates and switches to the branch
echo print('Hello World') >> hello.py # creates a python file
git add . # adds the file to the staging area
git commit -m "Add hello.py" # commits the file
git push origin feature1 # pushes the branch to the remote repository

Version Control using GitHub and Python

Juan F. Imbet 32

Enumerating objects: 4, done.
Counting objects: 100% (4/4), done.
Delta compression using up to 36 threads
Compressing objects: 100% (2/2), done.
Writing objects: 100% (3/3), 302 bytes | 302.00 KiB/s, done.
Total 3 (delta 0), reused 0 (delta 0), pack-reused 0 (from 0)
remote:
remote: Create a pull request for 'feature1' on GitHub by visiting:
remote: https://github.com/jfimbett/hello-world/pull/new/feature1
remote:
To https://github.com/jfimbett/hello-world.git
 * [new branch] feature1 -> feature1

Version Control using GitHub and Python

Juan F. Imbet 33

Check the repository on GitHub

You will see a new branch called feature1 with the file hello.py .

The branch will be 1 commit ahead of the master branch.

You can create a pull request to merge the changes to the master branch.

gh pr create --base master --head feature1

Let's explore the command. --base is the branch where you want to merge the
changes. --head is the branch where the changes are.

Version Control using GitHub and Python

Juan F. Imbet 34

Creating pull request for feature1 into master in jfimbett/hello-world

? Title Add hello.py
? Body <Received>
? What's next? Submit
https://github.com/jfimbett/hello-world/pull/1

You should see a pull request on the GitHub website.

A pull request is a proposal to merge a set of changes from one branch into another. In
a pull request, collaborators can review and discuss the proposed set of changes before
they integrate the changes into the main codebase.

Version Control using GitHub and Python

Juan F. Imbet 35

Commenting on a Pull Request

The repository administrator is the one that can accept or reject the pull request.
As an admin you can make commens on the pull request.

Let's imagine that the admin asks you to make a change to the file hello.py . You
can do it in the browser, for example asking to have double quotes instead of
single quotes.

You can check the pull request comments witht he command gh pr view 1 .

gh pr view 1

Version Control using GitHub and Python

Juan F. Imbet 36

Add hello.py jfimbett/hello-world#1
Open • jfimbett wants to merge 1 commit into master from feature1 • about 10 minutes ago
+1 -0 • No checks

 No description provided

jfimbett commented (Owner) • 0m • Newest comment

 Good commit, but please do the changes.

View this pull request on GitHub: https://github.com/jfimbett/hello-world/pull/1

Version Control using GitHub and Python

Juan F. Imbet 37

Making changes to the Pull Request

You can make changes to the pull request by checking out the branch and making
the changes.

git checkout feature1
echo print("Hello World") > hello.py ## two > are for appending, one is for overwriting
git add .
git commit -m "Change hello.py"
git push origin feature1

Version Control using GitHub and Python

Juan F. Imbet 38

Step 10: Merge the Pull Request

Once the changes are made, you can accept the pull request.

gh pr merge 1 --delete-branch # merges the pull request and deletes the branch,
gh pr merge 1 # merges the pull request and keeps the other branch

Version Control using GitHub and Python

Juan F. Imbet 39

Merging pull request jfimbett/hello-world#1 (Add hello.py)
? What merge method would you like to use? Create a merge commit
? What's next? Submit
✓ Merged pull request jfimbett/hello-world#1 (Add hello.py)
remote: Enumerating objects: 1, done.
remote: Counting objects: 100% (1/1), done.
remote: Total 1 (delta 0), reused 0 (delta 0), pack-reused 0 (from 0)
Unpacking objects: 100% (1/1), 889 bytes | 222.00 KiB/s, done.
From https://github.com/jfimbett/hello-world
 * branch master -> FETCH_HEAD
 b1066dc..66a1170 master -> origin/master
Updating b1066dc..66a1170
Fast-forward
 hello.py | 1 +
 1 file changed, 1 insertion(+)
 create mode 100644 hello.py
✓ Deleted local branch feature1 and switched to branch master
✓ Deleted remote branch feature1

Version Control using GitHub and Python

Juan F. Imbet 40

Forking and Cloning a Repository: Explore ideas before they are
proposed.

A fork is a new repository that shares code and visibility settings with the original
“upstream” repository. It doesnt download the code to your local machine by itself.

Propose changes to someone else's project.

Use someone else's project as a starting point for your own idea.
E.g. I like this repository on how to train a neural network to play the game snake.
https://github.com/greerviau/SnakeAI

Cloning is the process of downloading a repository to your local machine.

gh repo fork greerviau/SnakeAI --remote=true

Version Control using GitHub and Python

Juan F. Imbet 41

https://github.com/greerviau/SnakeAI

? Would you like to clone the fork? Yes
Cloning into 'SnakeAI'... the fork? (y/N) y
remote: Enumerating objects: 211, done.
remote: Total 211 (delta 0), reused 0 (delta 0), pack-reused 211 (from 1)
Receiving objects: 100% (211/211), 85.75 KiB | 3.30 MiB/s, done.
Resolving deltas: 100% (103/103), done.
From https://github.com/greerviau/SnakeAI
 * [new branch] master -> upstream/master
✓ Cloned fork
! Repository greerviau/SnakeAI set as the default repository.
To learn more about the default repository, run: gh repo set-default --help

cd SnakeAI

Version Control using GitHub and Python

Juan F. Imbet 42

The .gitignore file

The .gitignore file is a text file that tells Git which files or folders to ignore in a
project.

Example of a .gitignore file:

Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class

C extensions
*.so

You should include here large data files.

Version Control using GitHub and Python

Juan F. Imbet 43

Step 12: Delete the Local Repository

Deleting a repository is a dangerous operation, it is irreversible. To avoid any
unwanted deletion, I recommend deleting directly on the github website.

To stop tracking a repository, you can delete the .git folder.

iOS

rm -rf .git

Windows

rmdir .git /s /q

Version Control using GitHub and Python

Juan F. Imbet 44

The Git Fork-Branch-Pull Workflow

1. Fork and Clone a project.

Fork: Create a copy of the repository on your GitHub account.

Clone: Download the repository to your local machine.

gh repo fork jfimbett/pybacktestchain --remote=true

Version Control using GitHub and Python

Juan F. Imbet 45

✓ Created fork jfimbett-test/pybacktestchain
? Would you like to clone the fork? Yes
Cloning into 'pybacktestchain'...
remote: Enumerating objects: 128, done.
remote: Counting objects: 100% (128/128), done.
remote: Compressing objects: 100% (69/69), done.
remote: Total 128 (delta 52), reused 110 (delta 39), pack-reused 0 (from 0)
Receiving objects: 100% (128/128), 158.67 KiB | 4.07 MiB/s, done.
Resolving deltas: 100% (52/52), done.
From https://github.com/jfimbett/pybacktestchain
 * [new branch] branch1 -> upstream/branch1
 * [new branch] branch2 -> upstream/branch2
 * [new branch] branch_blockchain -> upstream/branch_blockchain
 * [new branch] master -> upstream/master
✓ Cloned fork
! Repository jfimbett/pybacktestchain set as the default repository. To learn more about the default repository, run: gh repo set-default --help

Version Control using GitHub and Python

Juan F. Imbet 46

Origin vs Upstream vs Local

Version Control using GitHub and Python

Juan F. Imbet 47

origin

What is it?

origin is the default name given to the remote repository when you clone a
repository. It refers to the repository from which your local copy was cloned.

Purpose:

It's typically where you push your changes (e.g., git push origin main) and pull
updates from.

If you fork a repository on GitHub and then clone your fork locally, origin points to
your forked repository (i.e., your own copy of the repository on GitHub).

If you fork a repository using gh repo fork the --remote=true flag will
automatically bring both the origin and upstream remotes.

Version Control using GitHub and Python

Juan F. Imbet 48

upstream

What is it?
upstream is a common convention (but not a special keyword in Git) to refer to the

original repository from which you forked a project. It points to the repository you
forked from, typically maintained by the original author or organization.

Purpose: It is used to pull changes from the original repository into your fork. This
is especially useful when you want to keep your fork up-to-date with the latest
changes from the original repository.

It helps maintain a link to the "source of truth" repository.

Version Control using GitHub and Python

Juan F. Imbet 49

What are the branches I have access to?

cd repository
git branch -a

* master
 remotes/origin/HEAD -> origin/master
 remotes/origin/branch1
 remotes/origin/branch2
 remotes/origin/branch_blockchain
 remotes/origin/master
 remotes/upstream/branch1
 remotes/upstream/branch2
 remotes/upstream/branch_blockchain
 remotes/upstream/master

Version Control using GitHub and Python

Juan F. Imbet 50

What if I only have origin or upstream but not both?

You can add a remote repository with the command git remote add <name> <url> .

git remote add upstream jfimbett/pybacktestchain.git

Why would I want both?

origin points to https://github.com/yourusername/repo.git .

upstream points to https://github.com/originaluser/repo.git

Version Control using GitHub and Python

Juan F. Imbet 51

fetch

fetch is a command that downloads changes from a remote repository to your
local repository. It does not merge the changes, it only downloads them.

git fetch upstream

Version Control using GitHub and Python

Juan F. Imbet 52

Pull from a branch

git checkout upstream/branch_blockchain

Switched to a new branch 'branch_blockchain'

git pull upstream branch_blockchain

From https://github.com/jfimbett/pybacktestchain
 * branch branch_blockchain -> FETCH_HEAD

Version Control using GitHub and Python

Juan F. Imbet 53

What if there is a new branch in the upstream repository?

Before

master
remotes/origin/HEAD -> origin/master
remotes/origin/branch1
remotes/origin/branch2
remotes/origin/branch_blockchain
remotes/origin/master
remotes/upstream/branch1
remotes/upstream/branch2
remotes/upstream/branch_blockchain
remotes/upstream/master

Version Control using GitHub and Python

Juan F. Imbet 54

fetch

git fetch upstream

remotes/origin/HEAD -> origin/master
remotes/origin/branch1
remotes/origin/branch2
remotes/origin/branch_blockchain
remotes/origin/master
remotes/upstream/branch1
remotes/upstream/branch2
remotes/upstream/branch_blockchain
remotes/upstream/master
remotes/upstream/testing_branch

Version Control using GitHub and Python

Juan F. Imbet 55

Version Control

How to automate the process of version control?

Python through Anaconda.

Cookiecutter: A tool that helps you create a project template.
Poetry: Dependency management and packaging in Python.

Semantic Release: A tool that automates the versioning and release process based
on the commit messages.
For this example let's create an empty repository, that we will convert into a library,
upload to GitHub and manage the version control.

Version Control using GitHub and Python

Juan F. Imbet 56

Anaconda

Install Python through Anaconda and create a virtual environment. This will allow
you to install packages without affecting the base environment, plus you can easily
share the environment with others. Different versions of the same
libraries/packages can have different behavior. A good practice is to create a virtual
environment for each project, you can use the same name as the project.

conda create --name mylibrary python=3.11
conda activate mylibrary

(mylibrary) C:\Users\jfimb\Documents> # Look at the (mylibrary) at the beginning of the line

Version Control using GitHub and Python

Juan F. Imbet 57

Cookiecutter

Cookiecutter is a command-line utility that creates projects from project templates.

A professional project consists of a set of files and directories that are organized in
a specific way. E.g. tests, documentation, source code, etc.

You can look for your favorite template here

Install cookiecutter using conda rather than pip to avoid conflicts with other
packages.

conda install -c conda-forge cookiecutter

Version Control using GitHub and Python

Juan F. Imbet 58

https://www.cookiecutter.io/templates

Treat your code as a package/library

Our goal is to creat something that looks like this, a package structure. Even if you dont
use python, you can have a similar structure with another language.

mylibrary
├── CHANGELOG.md ┐
├── CONDUCT.md │
├── CONTRIBUTING.md │
├── docs │ Package documentation
│ └── ... │
├── LICENSE │
├── README.md ┘
├── pyproject.toml ┐
├── src │
│ └── mylibrary │ Package source code, metadata,
│ ├── __init__.py │ and build instructions
│ ├── moduleA.py │
│ └── moduleB.py ┘
└── tests ┐
 └── ... ┘ Package tests

Version Control using GitHub and Python

Juan F. Imbet 59

Notes:

The CHANGELOG.md file contains a list of changes made to the package. It is useful
to keep track of the changes made to the package.

The CONDUCT.md file contains the code of conduct of the package. It is useful to
keep track of the rules of the package.
The CONTRIBUTING.md file contains the guidelines for contributing to the package.
It is useful to keep track of the contributions to the package.

The docs folder contains the documentation of the package. It is useful to keep
track of the documentation of the package.

The LICENSE file contains the license of the package. It is useful to keep track of
the license of the package.

Version Control using GitHub and Python

Juan F. Imbet 60

Important

Do not worry about the structure of the package src with a directory called
mylibrary . This is the way python packages are organized. The __init__.py file is

necessary for python to recognize the directory as a package.

Version Control using GitHub and Python

Juan F. Imbet 61

Retrieve a template

py-pkgs provides a template for Python packages.

cookiecutter https://github.com/py-pkgs/py-pkgs-cookiecutter.git

Version Control using GitHub and Python

Juan F. Imbet 62

 [1/7] author_name (Monty Python): Juan F. Imbet
 [2/7] package_name (mypkg): mylibrary
 [3/7] package_short_description (A package for doing great things!): Example of how to use templates in cookiecutter.
 [4/7] package_version (0.1.0): 0.0.0
 [5/7] python_version (3.9):
 [6/7] Select open_source_license
 1 - MIT
 2 - Apache License 2.0
 3 - GNU General Public License v3.0
 4 - CC0 v1.0 Universal
 5 - BSD 3-Clause
 6 - Proprietary
 7 - None
 Choose from [1/2/3/4/5/6/7] (1):
 [7/7] Select include_github_actions
 1 - no
 2 - ci
 3 - ci+cd
 Choose from [1/2/3] (1):

Version Control using GitHub and Python

Juan F. Imbet 63

Important:

Select 0.0.0 for the package version, this will allow us to use semantic-release to
calculate the next version based on the commit message history.

Version Control using GitHub and Python

Juan F. Imbet 64

cd mylibrary
dir # or ls in iOS

 Directory: C:\Users\jfimb\Documents\mylibrary

Mode LastWriteTime Length Name
---- ------------- ------ ----
d----- 28/08/2024 15:51 docs
d----- 28/08/2024 15:51 src
d----- 28/08/2024 15:51 tests
-a---- 28/08/2024 15:51 2066 .gitignore
-a---- 28/08/2024 15:51 624 .readthedocs.yml
-a---- 28/08/2024 15:51 107 CHANGELOG.md
-a---- 28/08/2024 15:51 3090 CONDUCT.md
-a---- 28/08/2024 15:51 2319 CONTRIBUTING.md
-a---- 28/08/2024 15:51 1094 LICENSE
-a---- 28/08/2024 15:51 365 pyproject.toml
-a---- 28/08/2024 15:51 681 README.md

Version Control using GitHub and Python

Juan F. Imbet 65

Poetry

Poetry is a tool that helps you manage dependencies and packaging in Python. It is
a good practice to use it when you are creating a package.

pip install poetry

Cookiecutter has already created a pyproject.toml file for you. This file contains the
metadata of the package, the dependencies, and the build instructions.

Version Control using GitHub and Python

Juan F. Imbet 66

pyproject.toml

toml stands for Tom's Obvious, Minimal Language. It is a configuration file format
that is easy to read due to its simplicity. It was created by Tom Preston-Werner, the
co-founder of GitHub.

[tool.poetry]
name = "mylibrary"
version = "0.0.0"
description = "Example of how to use templates in cookiecutter."
authors = ["Juan F. Imbet"]
license = "MIT"
readme = "README.md"

[tool.poetry.dependencies]
python = "^3.9"

[tool.poetry.dev-dependencies]

[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"

Version Control using GitHub and Python

Juan F. Imbet 67

Poetry, the basics

poetry install installs the dependencies.

poetry add <package> adds a package to the dependencies.

poetry remove <package> removes a package from the dependencies.

poetry build builds the package.

poetry publish publishes the package to PyPI (requires an account).

Version Control using GitHub and Python

Juan F. Imbet 68

Sync with GitHub

git init
git add .
git commit -m "First commit"
gh repo create mylibrary --public --source=.
git push -u origin master

Version Control using GitHub and Python

Juan F. Imbet 69

Version Control major . minor . patch

The most common way to define a version of a package is with three numbers
separated by dots. The first number is the major version, the second number is the
minor version, and the third number is the patch version.

Patchs are for bug fixes, minors are for new features, and majors are for breaking
changes.

Patchs and minors are backward compatible, this means that if you have a package
that depends on version 1.0.0, it will work with version 1.0.1 and 1.1.0, but not
necessarily with version 2.0.0.

Version Control using GitHub and Python

Juan F. Imbet 70

Semantic Release

Semantic Release is a tool that automates the versioning and release process based
on the commit messages. It is a good practice to use it when you are creating a
package.

<type>(optional scope): short summary in present tense

(optional body: explains motivation for the change)

(optional footer: note BREAKING CHANGES here, and issues to be closed)

Version Control using GitHub and Python

Juan F. Imbet 71

<type> refers to the kind of change made and is usually one of:

feat : A new feature.

fix : A bug fix.

docs : Documentation changes.

style : Changes that do not affect the meaning of the code (white-space,
formatting, missing semi-colons, etc).

refactor : A code change that neither fixes a bug nor adds a feature.

perf : A code change that improves performance.

test : Changes to the test framework.

build : Changes to the build process or tools.

Version Control using GitHub and Python

Juan F. Imbet 72

Examples

A type of fix triggers a patch version bump.

git commit -m "fix(mod_plotting): fix confusing error message in \
 plot_words"

A type of feat triggers a minor version bump.

git commit -m "feat(package): add example data and new module to \
 package"

Version Control using GitHub and Python

Juan F. Imbet 73

The text BREAKING_CHANGE: in the footer triggers a major version bump.

git commit -m "feat(mod_plotting): move code from plotting module \
 to pycounts module

BREAKING CHANGE: plotting module wont exist after this release."

Version Control using GitHub and Python

Juan F. Imbet 74

Configuration

To configure PSR, we need to tell it where the version number of our package is stored.
The package version is stored in the pyproject.toml file for a poetry-managed project. It
exists as the variable version under the table [tool.poetry] . To tell PSR this, we need
to add a new table to synchronize the version number.

Version Control using GitHub and Python

Juan F. Imbet 75

...rest of file hidden...

[tool.semantic_release]
version_variable = "pyproject.toml:version"

We can do it with the following command:

poetry add --group dev python-semantic-release
echo [tool.semantic_release] >> pyproject.toml
echo version_variable = "pyproject.toml:version" >> pyproject.toml
echo version_toml = [>> pyproject.toml
echo "pyproject.toml:tool.poetry.version", >> pyproject.toml
echo] >> pyproject.toml
poetry install

Version Control using GitHub and Python

Juan F. Imbet 76

Installing dependencies

Installing dependencies from lock file

Package operations: 0 installs, 2 updates, 0 removals

 - Updating certifi (2024.7.4 /home/conda/feedstock_root/build_artifacts/certifi_1720457958366/work/certifi -> 2024.7.4)
 - Updating urllib3 (2.2.2 /home/conda/feedstock_root/build_artifacts/urllib3_1719391292974/work -> 2.2.2)

Installing the current project: mylibrary (0.0.0)

Look at the pyproject.toml file, you will see the new table [tool.semantic_release] .
Also note that the version 0.0.0 is the same one that appears in the pyproject.toml
file.

[tool.poetry]
name = "mylibrary"
version = "0.0.0"

Version Control using GitHub and Python

Juan F. Imbet 77

What if I need more libraries in the future?

You can add them to the pyproject.toml file with the command poetry add
<package> .

You can remove them with the command poetry remove <package> .

E.g. poetry add numpy or poetry remove numpy .

Version Control using GitHub and Python

Juan F. Imbet 78

Semantic Release, the basics

semantic-release version calculates the next version based on the commit
message history.

semantic-release version

0.0.0
The next version is: 0.0.0!
No build command specified, skipping

Version Control using GitHub and Python

Juan F. Imbet 79

Note: Failed to create release on Github!

Sometimes you will see the following message:

[09:46:57] ERROR [semantic_release.cli.commands.version] ERROR version.version: 404 Client Error: Not version.py:744
 Found for url: https://api.github.com/repos/jfimbett/sec_yf/releases
 NoneType: None
404 Client Error: Not Found for url: https://api.github.com/repos/jfimbett/sec_yf/releases
Failed to create release on Github!

This is because semantic-release requires a GitHub token to create a release.

Version Control using GitHub and Python

Juan F. Imbet 80

Create a GitHub token

(Thanks to Samuli Salonen for finding this solution)

Go to https://github.com/settings/tokens

Generate new token with “repo” and “workflow” access

Copy the token (only shown once, so save it somewhere)
Add the token to your environment variables with the name GH_TOKEN . In
Windows, you can do this with the command setx GH_TOKEN <your token> .

Remember to restart your terminal after setting the environment variable.

Version Control using GitHub and Python

Juan F. Imbet 81

https://github.com/settings/tokens

Instructions for MacOS (zsh)

1. For zsh users, (default chell on macOS Catalina and later).

2. Open your terminal

3. Type nano ~/.zshrc this will open the .zshrc file in the nano text editor (a
minimalistic text editor that comes by default in most Unix systems).

4. Add the following line to the end of the file

export GH_TOKEN=<your token>

5. Save the file and exit. (Look at the bottom of the terminal for the commands to
save and exit).

6. Apply the changes with the command source ~/.zshrc .

7. For bash users do the same but with the file ~/.bash_profile .

Version Control using GitHub and Python

Juan F. Imbet 82

Patches

Add some code to src/mylibrary/mylibrary.py

src/mylibrary/mylibrary.py
def hello_world():
 return "Hello World"

git add src/mylibrary/mylibrary.py
git commit -m "fix(mylibrary): add hello_world function"
git push -u origin master

[master 07e4667] fix(mylibrary): add hello_world function
 1 file changed, 2 insertions(+)

Enumerating objects: 9, done.
...
branch 'master' set up to track 'origin/master'.

Version Control using GitHub and Python

Juan F. Imbet 83

Patches with Semantic Release

semantic-release version

0.0.1
The next version is: 0.0.1!
No build command specified, skipping

Version Control using GitHub and Python

Juan F. Imbet 84

Documentation

Add documentation to the hello_world function.

src/mylibrary/mylibrary.py
def hello_world():
 """Returns the string 'Hello World'."""
 return "Hello World"

git add src/mylibrary/mylibrary.py
git commit -m "docs(mylibrary): add documentation to hello_world function"
git push -u origin master

[master 654d724] docs(mylibrary): add documentation to hello_world function
 1 file changed, 1 insertion(+)

Enumerating objects: 9, done.
...
branch 'master' set up to track 'origin/master'.

Version Control using GitHub and Python

Juan F. Imbet 85

Not every commit triggers a version bump

semantic-release version

0.0.1
No release will be made, 0.0.1 has already been released!

Version Control using GitHub and Python

Juan F. Imbet 86

Minor change, backward compatible

Add a new function to the mylibrary.py file.

src/mylibrary/mylibrary.py
def hello_world():
 """Returns the string 'Hello World'."""
 return "Hello World"

def hello_world2():
 """Returns the string 'Hello World 2'."""
 return "Hello World 2"

git add src/mylibrary/mylibrary.py
git commit -m "feat(mylibrary): add hello_world2 function"
git push -u origin master

[master a5094a5] feat(mylibrary): add hello_world2 function
 1 file changed, 5 insertions(+), 1 deletion(-)
 ...

Version Control using GitHub and Python

Juan F. Imbet 87

Minor change with Semantic Release

semantic-release version

0.1.0
The next version is: 0.1.0!
No build command specified, skipping

Version Control using GitHub and Python

Juan F. Imbet 88

Major change, not backward compatible

Move the hello_world function to a new file called hello.py and remove the
hello_world2 function.

src/mylibrary/hello.py
def hello_world():
 """Returns the string 'Hello World'."""
 return "Hello World"

src/mylibrary/mylibrarypy

git add . # we use . when we modify multiple files
git commit -m "feat: update the code majorly" -m "BREAKING CHANGE: hello_world2 function removed it cannot be used"
git push -u origin master

Note how you can use more than once the -m flag to add more information to the
commit message.

Version Control using GitHub and Python

Juan F. Imbet 89

Major change with Semantic Release

semantic-release version

1.0.0
The next version is: 1.0.0!
No build command specified, skipping

Version Control using GitHub and Python

Juan F. Imbet 90

Where are the versions stored?

Releases tab on GitHub.

CHANGELOG.md file.

Version Control using GitHub and Python

Juan F. Imbet 91

Back to the package structure

poetry install
python
Python 3.11.9 | packaged by Anaconda, Inc. | (main, Apr 19 2024, 16:40:41)
[MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from mylibrary.hello import hello_world
>>> hello_world()
'Hello World'

Poetry installs locally the package in the virtual environment. You can import the
package as if it was a library. You must be in the root directory of the package for
python to recognize the package.

Version Control using GitHub and Python

Juan F. Imbet 92

Adding a new library and updating the version

src/mylibrary/mylibrary.py
import pandas as pd

poetry add pandas
poetry install
python
Python 3.11.9 | packaged by Anaconda, Inc. | (main, Apr 19 2024, 16:40:41)
[MSC v.1916 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from mylibrary.mylibrary import pd
>>> pd
<module 'pandas' from 'C:\\Users\\...__init__.py'>
>>>

Version Control using GitHub and Python

Juan F. Imbet 93

Further reading

Creating a python package
GitHub cheat sheet

GitHub documentation.

Version Control using GitHub and Python

Juan F. Imbet 94

https://py-pkgs.org/welcome
https://training.github.com/downloads/github-git-cheat-sheet/
https://docs.github.com/en/get-started

