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Preliminaries

Consider the following optimization problem

where  is a function. The function  is called the objective function. The set
 is called the feasible set. The vector  is called the decision variable. The vector  is

called the optimal solution. The scalar  is called the optimal value. The
optimization problem is called a minimization problem. A maximization problem is
defined similarly.
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Convex optimization

A convex optimization problem is an optimization problem where the objective
function is convex, and the feasible set is convex. A convex function is a function where
the line segment between any two points on the graph of the function lies above the
graph. A convex set is a set where the line segment between any two points in the set
lies in the set. Convex optimization problems are easy to solve because they have a
unique global minimum.
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Solving convex optimization problems

Convex optimization problems can be solved using the gradient descent algorithm. The
gradient descent algorithm is an iterative algorithm that starts at a random point and
moves in the direction of the negative gradient until it reaches a local minimum. The
gradient descent algorithm is guaranteed to converge to a local minimum if the
objective function is convex and the feasible set is convex. The gradient descent
algorithm is guaranteed to converge to the global minimum if the objective function is
convex and the feasible set is convex and compact.
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Gradient descent

where  is the current point,  is the next point,  is the step size, and  is
the gradient of the objective function at the current point. The step size is a
hyperparameter that controls how fast the algorithm moves towards the minimum. The
step size can be constant or variable. The step size is constant if it does not change
during the algorithm. The step size is variable if it changes during the algorithm. The
step size can be chosen using more advanced methods such as line search or
backtracking line search.
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Quick gradient descent example in Python

import numpy as np

f = lambda x: x**2
df = lambda x: 2*x

x = 10
alpha = 0.1
tol = 1e-6
max_iter = 1000

while True:
    x_new = x - alpha*df(x)
    if np.abs(x_new - x) < tol:
        break
    x = x_new
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Optimization in Python: SciPy
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import numpy as np
from scipy.optimize import minimize
f = lambda x: x[0]**2 + x[1]**2
x0 = np.array([10, 10])
res = minimize(f, x0)
print(res)

      fun: 9.714371410949269e-13
 hess_inv: array([[ 0.75000002, -0.24999998],
       [-0.24999998,  0.75000002]])
      jac: array([-1.37896909e-06, -1.37896909e-06])
  message: 'Optimization terminated successfully.'
     nfev: 12
      nit: 2
     njev: 4
   status: 0
  success: True
        x: array([-6.96935126e-07, -6.96935126e-07])
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Performance, how fast is SciPy?

import numpy as np
def my_minimize(f, x0, alpha = 0.1, tol = 1e-6, max_iter = 1000):
    df = lambda x: (f(x + tol) - f(x - tol))/(2*tol)
    x = x0
    for _ in range(max_iter):
        x_new = x - alpha*df(x)
        if np.max(np.abs(x_new - x)) < tol:
            break
        x = x_new
    return x
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Profiling, knowing the derivative accelerates convergence

import numpy as np
from scipy.optimize import minimize
f = lambda x: x**2
x0 = 10
%timeit minimize(f, x0, tol=1e-6, options={'maxiter': 1000})
%timeit my_minimize(f, x0, tol=1e-6, alpha=0.1, max_iter=1000)

588 µs ± 1.32 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)
358 µs ± 1.08 µs per loop (mean ± std. dev. of 7 runs, 1,000 loops each)

Python for Finance

Juan F. Imbet Ph.D. 10



Scipy when the Jacobian is known

import numpy as np
from scipy.optimize import minimize
f = lambda x: x[0]**2 + x[1]**2
df = lambda x: np.array([2*x[0], 2*x[1]])
x0 = np.array([10, 10])
res = minimize(f, x0, jac=df)
print(res)

 fun: 1.5777218104420236e-30
 hess_inv: array([[ 0.75, -0.25],
       [-0.25,  0.75]])
      jac: array([-1.77635684e-15, -1.77635684e-15])
  message: 'Optimization terminated successfully.'
     nfev: 4
      nit: 2
     njev: 4
   status: 0
  success: True
        x: array([-8.8817842e-16, -8.8817842e-16])
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Numerical Differentiation

Computing the derivative of a function numerically is useful when the derivative is not
known analytically. The derivative of a function  at a point  is
defined as

where  is the partial derivative of  with respect to  at . The partial derivative
of  with respect to  at  is defined as

where  is the -th standard basis vector. The partial derivative of  with respect to 
at  is the slope of the tangent line of  at  in the direction of .
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Numerical Differentiation (2)

The partial derivative of  with respect to  at  can be approximated using the
forward difference formula

where  is a small number. It can also be approximated using the backward difference
formula

It can also be approximated using the central difference formula

where  is a small number. The central difference formula is more accurate than the
forward difference formula and the backward difference formula.
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Numerical Differentiation, higher order derivatives

The second partial derivative of  with respect to  and  at  is defined as

where  is the partial derivative of  with respect to  at . The
second partial derivative of  with respect to  and  at  can be approximated using
the central difference formula
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Numerical Differentiation, higher order derivatives (2)

Replacing the partial derivative of  with respect to  at  with the central difference
formula gives

arranging terms
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Differentiation in Python

import numpy as np
def df(f, h=1e-6):
    return lambda x: (f(x + h) - f(x - h))/(2*h)

Differentiation plays a key role in training and tuning machine learning models. Even
LLM uses differentiation to compute the optimal weights.
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Non-convex optimization

A non-convex optimization problem is an optimization problem where the objective
function is non-convex, or the feasible set is non-convex. Non-convex optimization
problems are difficult to solve because they have multiple local minima. The gradient
descent algorithm is not guaranteed to converge to the global minimum if the
objective function is non-convex or the feasible set is non-convex.

Python for Finance

Juan F. Imbet Ph.D. 17



Non-convex optimization (2)

How to solve non-convex optimization problems? Escape local minima using random
restarts.
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Heuristics and metaheuristics

A heuristic is a technique that is used to solve a problem. A metaheuristic is a heuristic
that is used to solve a class of problems.

Simplest metaheuristic: random local search. Start at a random point and move in a
random direction until a local minimum is reached. Repeat the process multiple times
and keep the best solution.
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Coding a random local search in Python

import numpy as np
def random_local_search(f, x0, alpha = 0.1, tol = 1e-6, max_iter = 1000):
    x = x0
    for _ in range(max_iter):
        x_new = x - alpha*np.random.randn(*x.shape)
        if np.max(np.abs(x_new - x)) < tol:
            break
        x = x_new
    return x
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