
Object Oriented Programming

Python for Finance

Juan F. Imbet Ph.D. 1

- Object Oriented Programming

Object Oriented Programming is a programming paradigm that uses objects and
classes. It is useful for creating reusable code, and it can also be used to create complex
programs. Object Oriented Programming is done using the class keyword. Classes are
used to create objects, which are instances of a class. Objects can have attributes and
methods. Attributes are variables that belong to an object, and methods are functions
that belong to an object.

class Asset:
 pass

Python for Finance

Juan F. Imbet Ph.D. 2

Constructor

A constructor is a special method that is used to initialize an object. It is useful for
creating objects with default values. Constructors are done using the __init__
method. The __init__ method has two arguments: self and args . The self
argument is used to refer to the object itself, and the args argument is used to pass
arguments to the constructor. The __init__ method is called when an object is
created.

class Asset:
 def __init__(self, name, price):
 self.name = name
 self.price = price

asset = Asset('Bitcoin', 50000)

Python for Finance

Juan F. Imbet Ph.D. 3

Attributes

Attributes are variables that belong to an object. They are useful for storing information
about an object. Attributes can be accessed using the . operator. Attributes can also
be accessed using the getattr function. Attributes can be set using the = operator.
Attributes can also be set using the setattr function. Attributes can be deleted using
the del operator. Attributes can also be deleted using the delattr function.

asset.name # Get attribute
asset.price = 60000 # Set attribute
asset.type = 'Cryptocurrency' # Set attribute not defined in constructor

Python for Finance

Juan F. Imbet Ph.D. 4

Methods

Methods are functions that belong to an object. Methods can be called using the ()
operator. Since they are functions they are defined using the def keyword and always
contain the self argument first.

class Asset:
 ...

 def double_price(self):
 return self.price*2

Python for Finance

Juan F. Imbet Ph.D. 5

Dunders (Magic methods)

Dunders are special methods that are used to avoid operator overloading. They are
useful for creating objects that behave like built-in objects. Dunders are done using the
__ keyword. For example, the + operator can be used to add two numbers, but it can

also be used to add two strings.

class Vector2D:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __add__(self, other):
 return Vector2D(self.x + other.x, self.y + other.y)

v1 = Vector2D(1, 2)
v2 = Vector2D(3, 4)
v3 = v1 + v2

Python for Finance

Juan F. Imbet Ph.D. 6

- Dunders (Magic methods)

Non-exhaustive list of dunders

__init__ # Constructor
__str__ # String representation
__add__ # Addition +
__sub__ # Subtraction -
__mul__ # Multiplication *
__truediv__ # Division /
__floordiv__ # Floor division //
__mod__ # Modulo %
__pow__ # Exponentiation **
__lt__ # Less than <
__le__ # Less than or equal to <=
__eq__ # Equal to ==
__ne__ # Not equal to !=
__gt__ # Greater than >
__ge__ # Greater than or equal to >=

Python for Finance

Juan F. Imbet Ph.D. 7

Example: Portfolio Class

A portfolio consists of a list of assets. Each asset has a name (identifier) as well as a
history of prices.

class Asset:

 self.mu = np.nan # Expected return
 self.sigma = np.nan # Volatility

 def __init__(self, name: str, price_history: pd.DataFrame):
 self.name = name
 self.price_history = price_history
 self.compute_mu()
 self.compute_sigma()

 def compute_mu(self):
 self.mu = self.price_history.pct_change().mean()

 def compute_sigma(self):
 self.sigma = self.price_history.pct_change().std()

Python for Finance

Juan F. Imbet Ph.D. 8

Example: Portfolio Class (2)

class Portfolio:

 self.mu = np.nan # Expected return
 self.sigma = np.nan # Volatility

 def __init__(self, assets: List[Asset], weights: List[float]):
 self.assets = assets
 self.weights = weights
 self.compute_mu()
 self.compute_sigma()

 def compute_mu(self):
 self.mu = np.sum([asset.mu * weight for asset, weight in zip(self.assets, self.weights)])

 def compute_sigma(self):
 # Covariance matrix
 cov = np.cov([asset.price_history.pct_change().dropna() for asset in self.assets])
 # Weighted covariance matrix
 cov = np.diag(self.weights) @ cov @ np.diag(self.weights)
 # Portfolio volatility
 self.sigma = np.sqrt(np.diag(cov).sum())

Python for Finance

Juan F. Imbet Ph.D. 9

Python OOP Exercise: Library Management System

Objective

Practice fundamental OOP concepts:
Classes

Objects

Inheritance

Methods

Python for Finance

Juan F. Imbet Ph.D. 10

Problem Statement

Design a basic Library Management System that allows a user to:

Add books to the library

View available books

Borrow a book
Return a book

Python for Finance

Juan F. Imbet Ph.D. 11

Requirements: Book Class

Book Class

Attributes:

title : The title of the book

author : The author of the book

available : Whether the book is available for borrowing

Methods:

__init__(self, title, author) : Initializes the book with title and author,
available by default

__str__(self) : Returns a string representation of the book

Python for Finance

Juan F. Imbet Ph.D. 12

Requirements: Library Class

Library Class

Attributes:

books : A list of Book objects

Methods:

__init__(self) : Initializes the library with an empty list of books

add_book(self, book) : Adds a Book to the library's list

display_books(self) : Prints details of all books

borrow_book(self, title) : Borrows a book by title if available

return_book(self, title) : Returns a borrowed book, making it available
again

Python for Finance

Juan F. Imbet Ph.D. 13

Main Program

Interaction Steps

1. Create a Library object

2. Add at least three Book objects to the library

3. Display the list of available books

4. Allow the user to borrow and return books by title

Python for Finance

Juan F. Imbet Ph.D. 14

Example Interaction

Create the library and add books
my_library = Library()
book1 = Book("The Great Gatsby", "F. Scott Fitzgerald")
book2 = Book("1984", "George Orwell")
book3 = Book("To Kill a Mockingbird", "Harper Lee")

my_library.add_book(book1)
my_library.add_book(book2)
my_library.add_book(book3)

Display all available books
print("Available books:")
my_library.display_books()

Borrow a book
print("\nBorrowing '1984'...")
my_library.borrow_book("1984")

Try to borrow the same book again
print("\nAttempting to borrow '1984' again...")
my_library.borrow_book("1984")

Return the book
print("\nReturning '1984'...")
my_library.return_book("1984")

Display all available books after returning
print("\nAvailable books after returning:")
my_library.display_books()

Python for Finance

Juan F. Imbet Ph.D. 15

