Testing

Testing Python Code

Juan F. Imbet Ph.D.

Juan F. Imbet

Testing

Testing

e |n general, the goal of testing is to check that your code produces the results you
expect it to. You probably already conduct informal tests of your code in your
current workflow.

e |n general, the goal of testing is to check that your code produces the results you
expect it to. You probably already conduct informal tests of your code in your
current workflow.

e |n Python, tests are usually written using an assert statement, which checks the
truth of a given expression, and returns a user-defined error message if the

expression is false.

assert ~expression , "error message’

Juan F. Imbet

Testing

The testing workflow

e Write a test.
e Write the code to be tested.

e Test the code.
e Refactor code (make small changes).

e Repeat.

Juan F. Imbet

Testing

Write code Test code

Write tests

Juan F. Imbet

Refactor code

Testing

pytest

e pytest is a testing framework that makes building simple and scalable tests
easy.Install it using pip install pytest .

content of test sample.py
def inc(x):
return x + 1

def test answer():
assert inc(3) == 5

e Tests are defined as functions prefixed with test_ and contain one or more

statements that assert code produces an expected result or raises a particular
error.

e Tests are put in files of the form test *.py or *_test.py, and are usually placed
in a directory called tests/ in a package’s root.

Juan F. Imbet

Testing

pytest
================================== test session starts ==================================
platform win32 -- Python 3.11.9, pytest-8.3.3, pluggy-1.5.0
rootdir:
configfile: pyproject.toml
plugins: anyio-4.6.0
collected 1 item
test sample.py F [100%]
======================================= FAILURES ==
test _answer
def test_answer():
> assert inc(3) == 5
E assert 4 == 5
E + where 4 = inc(3)
test sample.py:6: AssertionError
================================ Short test summary info =============z====z==z==z===z==z==z==z==z======
FAILED test sample.py::test answer - assert 4 ==
===================================] failed in 0.32s =========================z====z========

Juan F. Imbet

Testing

Tests in a package

Go to the stable branch.

pybacktestchain

Juan F. Imbet

CHANGELOG.md
CONDUCT . md
CONTRIBUTING.md
docs

L_ooo
LICENSE
README . md
poetry.lock
pyproject.toml
src

I_o-o

tests

L test pybacktestchain.py

Testing

Testing with pytest, e.g. proper imports

content of test imports.py

def test data import():
from pybacktestchain.data module import FirstTwoMoments
assert FirstTwoMoments is not None

def test broker import():
from pybacktestchain.broker import Backtest, StoplLoss
assert Backtest is not None
assert StopLoss is not None

def test blockchain_import():
from pybacktestchain.blockchain import load blockchain
assert load blockchain is not None

poetry add --group dev pytest
pytest tests/

Juan F. Imbet

Testing

Test that a new backtest is added to a new blockchain

Check test_blockchain.py inthe tests/ directory.

Juan F. Imbet

Testing

Unit vs Integration tests

e Unit tests are tests that check that individual units of code (e.g. functions) work as
expected.

e |ntegration tests check that different parts of the code work together as expected

test new _blockchain.py .

Juan F. Imbet

10

Testing

Parametrization

e Parametrization allows you to run the same test with different inputs and expected
outputs.

import pytest

@pytest.mark.parametrize("input, expected", [

(1, 2),
(2, 3),
(3, 4),
1)
def test inc(input, expected):
assert inc(input) == expected

Juan F. Imbet

11

