
Testing Python Code

Juan F. Imbet Ph.D.

Testing

Juan F. Imbet 1

Testing
In general, the goal of testing is to check that your code produces the results you
expect it to. You probably already conduct informal tests of your code in your
current workflow.

In general, the goal of testing is to check that your code produces the results you
expect it to. You probably already conduct informal tests of your code in your
current workflow.

In Python, tests are usually written using an assert statement, which checks the
truth of a given expression, and returns a user-defined error message if the
expression is false.

assert `expression`, `error message`

Testing

Juan F. Imbet 2

The testing workflow

Write a test.

Write the code to be tested.
Test the code.

Refactor code (make small changes).

Repeat.

Testing

Juan F. Imbet 3

Testing

Juan F. Imbet 4

pytest

pytest is a testing framework that makes building simple and scalable tests
easy.Install it using pip install pytest .

content of test_sample.py
def inc(x):
 return x + 1

def test_answer():
 assert inc(3) == 5

Tests are defined as functions prefixed with test_ and contain one or more
statements that assert code produces an expected result or raises a particular
error.

Tests are put in files of the form test_*.py or *_test.py , and are usually placed
in a directory called tests/ in a package’s root.

Testing

Juan F. Imbet 5

pytest
================================== test session starts ==================================
platform win32 -- Python 3.11.9, pytest-8.3.3, pluggy-1.5.0
rootdir: ...
configfile: pyproject.toml
plugins: anyio-4.6.0
collected 1 item

test_sample.py F [100%]

======================================= FAILURES ==
______________________________________ test_answer ______________________________________

 def test_answer():
> assert inc(3) == 5
E assert 4 == 5
E + where 4 = inc(3)

test_sample.py:6: AssertionError
================================ short test summary info ================================
FAILED test_sample.py::test_answer - assert 4 == 5
=================================== 1 failed in 0.32s ===================================

Testing

Juan F. Imbet 6

Tests in a package

Go to the stable branch.

pybacktestchain
├── CHANGELOG.md
├── CONDUCT.md
├── CONTRIBUTING.md
├── docs
│ └── ...
├── LICENSE
├── README.md
├── poetry.lock
├── pyproject.toml
├── src
│ └── ...
└── tests <--------
 └── test_pybacktestchain.py <--------

Testing

Juan F. Imbet 7

Testing with pytest , e.g. proper imports

content of test_imports.py
def test_data_import():
 from pybacktestchain.data_module import FirstTwoMoments
 assert FirstTwoMoments is not None
def test_broker_import():
 from pybacktestchain.broker import Backtest, StopLoss
 assert Backtest is not None
 assert StopLoss is not None
def test_blockchain_import():
 from pybacktestchain.blockchain import load_blockchain
 assert load_blockchain is not None

poetry add --group dev pytest

pytest tests/

Testing

Juan F. Imbet 8

Test that a new backtest is added to a new blockchain

Check test_blockchain.py in the tests/ directory.

Testing

Juan F. Imbet 9

Unit vs Integration tests

Unit tests are tests that check that individual units of code (e.g. functions) work as
expected.

Integration tests check that different parts of the code work together as expected
test_new_blockchain.py .

Testing

Juan F. Imbet 10

Parametrization

Parametrization allows you to run the same test with different inputs and expected
outputs.

import pytest

@pytest.mark.parametrize("input, expected", [
 (1, 2),
 (2, 3),
 (3, 4),
])
def test_inc(input, expected):
 assert inc(input) == expected

Testing

Juan F. Imbet 11

