
Web Development with Flask

Juan F. Imbet Ph.D.

Web Development with Flask

Juan F. Imbet Ph.D. 1

Flask

Web Development with Flask

Juan F. Imbet Ph.D. 2

Overview

save this as app.py
from flask import Flask

app = Flask(__name__)

@app.route("/")
def hello_world():
 return "<p>Hello, World!</p>"

$ flask run
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Web Development with Flask

Juan F. Imbet Ph.D. 3

So what did that code do?

1. First we imported the Flask class. An instance of this class will be our Web Server
Gateway Interface (WSGI) application.

2. Next we create an instance of this class. The first argument is the name of the
application’s module or package. __name__ is a convenient shortcut for this that is
appropriate for most cases. This is needed so that Flask knows where to look for
resources such as templates and static files.

3. We then use the route() decorator to tell Flask what URL should trigger our
function.

4. The function returns the message we want to display in the user’s browser. The
default content type is HTML, so HTML in the string will be rendered by the
browser.

Web Development with Flask

Juan F. Imbet Ph.D. 4

Running the app

Save it as hello.py or something similar. Make sure to not call your application
flask.py because this would conflict with Flask itself.

To run the application, use the flask command or python -m flask . You need to
tell the Flask where your application is with the --app option.

$ flask --app hello run
 * Serving Flask app 'hello'
 * Running on http://127.0.0.1:5000 (Press CTRL+C to quit)

As a shortcut, if the file is named app.py or wsgi.py , you don’t have to use --
app . See Command Line Interface for more details.

Web Development with Flask

Juan F. Imbet Ph.D. 5

The Server

This launches a very simple builtin server, which is good enough for testing but
probably not what you want to use in production.

Now head over to http://127.0.0.1:5000/, and you should see your hello world
greeting.

If another program is already using port 5000, you’ll see OSError: [Errno 98] or
OSError: [WinError 10013] when the server tries to start. See Address already in

use for how to handle that.

If you run the server you will notice that the server is only accessible from your own
computer, not from any other in the network. This is the default because in
debugging mode a user of the application can execute arbitrary Python code on
your computer.

Web Development with Flask

Juan F. Imbet Ph.D. 6

http://127.0.0.1:5000/

Debug Mode

The flask run command can do more than just start the development server. By
enabling debug mode, the server will automatically reload if code changes, and will
show an interactive debugger in the browser if an error occurs during a request.

Warning

The debugger allows executing arbitrary Python code from the browser. It is
protected by a pin, but still represents a major security risk. Do not run the
development server or debugger in a production environment.

Web Development with Flask

Juan F. Imbet Ph.D. 7

HTML Escaping

When returning HTML (the default response type in Flask), any user-provided
values rendered in the output must be escaped to protect from injection attacks.
HTML templates rendered with Jinja , introduced later, will do this automatically.

escape() , shown here, can be used manually. It is omitted in most examples for
brevity, but you should always be aware of how you’re using untrusted data.

from markupsafe import escape

@app.route("/<name>")
def hello(name):
 return f"Hello, {escape(name)}!"

Web Development with Flask

Juan F. Imbet Ph.D. 8

Routing

Modern web applications use meaningful URLs to help users. Users are more likely to
like a page and come back if the page uses a meaningful URL they can remember and
use to directly visit a page.

Use the route() decorator to bind a function to a URL.

@app.route('/')
def index():
 return 'Index Page'

@app.route('/hello')
def hello():
 return 'Hello, World'

You can do more! You can make parts of the URL dynamic and attach multiple rules to a
function.

Web Development with Flask

Juan F. Imbet Ph.D. 9

Variable Rules

You can add variable sections to a URL by marking sections with <variable_name> . Your
function then receives the <variable_name> as a keyword argument. Optionally, you
can use a converter to specify the type of the argument like
<converter:variable_name> .

Web Development with Flask

Juan F. Imbet Ph.D. 10

Example

from markupsafe import escape

@app.route('/user/<username>')
def show_user_profile(username):
 # show the user profile for that user
 return f'User {escape(username)}'

@app.route('/post/<int:post_id>')
def show_post(post_id):
 # show the post with the given id, the id is an integer
 return f'Post {post_id}'

@app.route('/path/<path:subpath>')
def show_subpath(subpath):
 # show the subpath after /path/
 return f'Subpath {escape(subpath)}'

Web Development with Flask

Juan F. Imbet Ph.D. 11

HTTP Methods

GET is used to request data from a specified resource. For example, a query to a
search engine.

POST is used to send data to a server to create/update a resource. For example,
submitting a form to create a new user.

from flask import request

@app.route('/login', methods=['GET', 'POST'])
def login():
 if request.method == 'POST':
 return do_the_login()
 else:
 return show_the_login_form()

Web Development with Flask

Juan F. Imbet Ph.D. 12

HTTP Methods

You can also separate views for different methods into different functions. Flask
provides a shortcut for decorating such routes with get() , post() , etc. for each
common HTTP method.

@app.get('/login')
def login_get():
 return show_the_login_form()

@app.post('/login')
def login_post():
 return do_the_login()

Web Development with Flask

Juan F. Imbet Ph.D. 13

Static Files

Dynamic web applications also need static files. That’s usually where the CSS and
JavaScript files are coming from. Ideally your web server is configured to serve
them for you, but during development Flask can do that as well. Just create a folder
called static in your package or next to your module and it will be available at
/static on the application.

url_for('static', filename='style.css') looks up the file static/style.css .

Web Development with Flask

Juan F. Imbet Ph.D. 14

Rendering Templates

Generating HTML from within Python is not fun, and actually pretty cumbersome
because you have to do the HTML escaping on your own to keep the application
secure. Because of that Flask configures the Jinja2 template engine for you
automatically.

Templates can be used to generate any type of text file. For web applications, you’ll
primarily be generating HTML pages, but you can also generate markdown, plain
text for emails, and anything else.

Web Development with Flask

Juan F. Imbet Ph.D. 15

Jinja2

Jinja2 is a modern and designer-friendly templating language for Python, modelled
after Django’s (a web framework) templates. It is fast, widely used, and secure with
the optional sandboxed template execution environment.

Web Development with Flask

Juan F. Imbet Ph.D. 16

Rendering Templates

To render a template you can use the render_template() method. All you have to
do is provide the name of the template and the variables you want to pass to the
template engine as keyword arguments. Here’s a simple example of how to render
a template:

from flask import render_template

@app.route('/hello/')
@app.route('/hello/<name>')
def hello(name=None):
 return render_template('hello.html', person=name)

Web Development with Flask

Juan F. Imbet Ph.D. 17

Rendering Templates

Flask will look for templates in the templates folder. So if your application is a
module, this folder is next to that module, if it’s a package it’s actually inside your
package:

Case 1: a module:

/application.py
/templates
 /hello.html

Case 2: a package:

/application
 /__init__.py
 /templates
 /hello.html

Web Development with Flask

Juan F. Imbet Ph.D. 18

Example Template

<!doctype html>
<title>Hello from Flask</title>
{% if person %}
 <h1>Hello {{ person }}!</h1>
{% else %}
 <h1>Hello, World!</h1>
{% endif %}

Templates are especially useful if inheritance is used. If you want to know how that
works, see Template Inheritance. Basically template inheritance makes it possible to
keep certain elements on each page (like header, navigation and footer).

Web Development with Flask

Juan F. Imbet Ph.D. 19

The request Object

A global object.

from flask import request

@app.route('/login', methods=['POST', 'GET'])
def login():
 error = None
 if request.method == 'POST':
 if valid_login(request.form['username'],
 request.form['password']):
 return log_the_user_in(request.form['username'])
 else:
 error = 'Invalid username/password'
 # the code below is executed if the request method
 # was GET or the credentials were invalid
 return render_template('login.html', error=error)

Web Development with Flask

Juan F. Imbet Ph.D. 20

Cookies

To access cookies you can use the cookies attribute. To set cookies you can use
the set_cookie method of response objects.

from flask import request

@app.route('/')
def index():
 username = request.cookies.get('username')
 # use cookies.get(key) instead of cookies[key] to not get a
 # KeyError if the cookie is missing.

from flask import make_response

@app.route('/')
def index():
 resp = make_response(render_template(...))
 resp.set_cookie('username', 'the username')
 return resp

Web Development with Flask

Juan F. Imbet Ph.D. 21

APIS with JSON

A common response format when writing an API is JSON. It’s easy to get started
writing such an API with Flask. If you return a dict or list from a view, it will be
converted to a JSON response.

@app.route("/me")
def me_api():
 user = get_current_user()
 return {
 "username": user.username,
 "theme": user.theme,
 "image": url_for("user_image", filename=user.image),
 }

@app.route("/users")
def users_api():
 users = get_all_users()
 return [user.to_json() for user in users]

Web Development with Flask

Juan F. Imbet Ph.D. 22

Sessions

In addition to the request object there is also a second object called session which
allows you to store information specific to a user from one request to the next. This is
implemented on top of cookies for you and signs the cookies cryptographically. What
this means is that the user could look at the contents of your cookie but not modify it,
unless they know the secret key used for signing.

Web Development with Flask

Juan F. Imbet Ph.D. 23

Example Sessions

from flask import session

Set the secret key to some random bytes. Keep this really secret!
app.secret_key = b'_5#y2L"F4Q8z\n\xec]/'

@app.route('/')
def index():
 if 'username' in session:
 return f'Logged in as {session["username"]}'
 return 'You are not logged in'

Web Development with Flask

Juan F. Imbet Ph.D. 24

Login + Logout

@app.route('/login', methods=['GET', 'POST'])
def login():
 if request.method == 'POST':
 session['username'] = request.form['username']
 return redirect(url_for('index'))
 return '''
 <form method="post">
 <p><input type=text name=username>
 <p><input type=submit value=Login>
 </form>
 '''

@app.route('/logout')
def logout():
 # remove the username from the session if it's there
 session.pop('username', None)
 return redirect(url_for('index'))

Web Development with Flask

Juan F. Imbet Ph.D. 25

How to generate good secret keys

A secret key should be as random as possible. Your operating system has ways to
generate pretty random data based on a cryptographic random generator. Use the
following command to quickly generate a value for Flask.secret_key (or SECRET_KEY):

python -c 'import secrets; print(secrets.token_hex())'
'192b9bdd22ab9ed4d12e236c78afcb9a393ec15f71bbf5dc987d54727823bcbf'

Web Development with Flask

Juan F. Imbet Ph.D. 26

APIs using Flask

API with arguments

from flask import Flask, request, jsonify

app = Flask(__name__)

@app.route('/api', methods=['GET'])
def api():
 name = request.args.get('name')
 return jsonify({'name': name})

Call the API with http://localhost:5000/api?name=Juan

Web Development with Flask

Juan F. Imbet Ph.D. 27

