
Programming 1: VBA and Python

Juan F. Imbet Ph.D.

Paris Dauphine University

M203 (M1)

VBA and Python

Juan F. Imbet Ph.D. 1

Session 1 (03/09) Introduction to Programming and VBA, basis, variables and
operators.

Session 2 (10/09) Control flow, modules and functions.
Session 3 (20/09) Object Oriented Programming in VBA

Session 4 (01/10) Programming with Solver

Session 5 (08/10) Introduction to Python: Getting Started and Introduction to
Programming.

Session 6 (15/10) Intermediate Concepts.

Session 7 (22/10) Linear Algebra and Optimization.

Session 8 (29/10) Data Frames
Session 9 (12/11) Object Oriented Programming.

Session 10 (19/11) API and Web Scraping + Project Explanation.

VBA and Python

Juan F. Imbet Ph.D. 2

Grading

90% Final Project

10% Participation

Note: As of M203 policies, attendance is mandatory.

VBA and Python

Juan F. Imbet Ph.D. 3

Visual Basic for Applications (VBA)

VBA is a programming language that is used to automate tasks in Microsoft Office
applications.

VBA is a subset of Visual Basic (VB), focusing on macros and automation.
You can use VBA inside of Outlook, Word, Excel, Access, and PowerPoint.

We will focus on Excel VBA as it is the most common use case.

Although some other languages are becoming more and more popular, VBA is still
widely used in the industry, and this is unlikely to change in the near future.

VBA and Python

Juan F. Imbet Ph.D. 4

What happens in the back?

Code written in VBA is compiled to Microsoft P-Code (Pseudo Code), a proprietary
intermediate language.

This P-Code is then executed by the host application (Excel, Word, etc.).

It is not the most efficient language, but it is very flexible and easy to use.

VBA and Python

Juan F. Imbet Ph.D. 5

Characteristics of VBA

General Purpose

Interpreted
Event-Driven

Object-Oriented

High Level

VBA and Python

Juan F. Imbet Ph.D. 6

General Purpose

VBA is a general-purpose programming language, meaning that it can be used to
solve a wide range of problems. It is only limited by the use of Office applications.

Automated Financial Models and Dashbords.

Custom ERP Systems
Interactive Games

In 2003 a flight simulator was created in Excel using VBA.

VBA and Python

Juan F. Imbet Ph.D. 7

Interpreted

VBA is an interpreted language, meaning that the code is executed line by line. This
is different from compiled languages like C++ or Java, where the code is compiled
into machine code before execution.

VBA and Python

Juan F. Imbet Ph.D. 8

Event-Driven

VBA is an event-driven language, meaning that code is executed in response to
events. For example, you can write code that is executed when a user clicks a
button or opens a workbook.

Object-Oriented

VBA is an object-oriented language, meaning that it uses objects to represent data
and functionality. Objects can be manipulated using methods and properties.

VBA and Python

Juan F. Imbet Ph.D. 9

High Level

VBA is a high-level language, meaning that it is closer to human language than
machine language. This makes it easier to read and write code (more on this when
we talk about Python).

VBA and Python

Juan F. Imbet Ph.D. 10

SETTING UP YOUR ENVIRONMENT

VBA and Python

Juan F. Imbet Ph.D. 11

You need

Microsoft Excel
VS Code (we will not use the standard VBA editor)

VBA extension for VS Code

Python (Anaconda Distribution)

xlwings library for Python that allows you to interact with Excel.

VBA and Python

Juan F. Imbet Ph.D. 12

https://code.visualstudio.com/download
https://www.anaconda.com/download/
https://docs.xlwings.org/en/stable/installation.html

Install xlwings

pip install xlwings
pip install watchgod

Open an excel file and save it as a macro-enabled workbook, call it hello_world.xlsm .

VBA and Python

Juan F. Imbet Ph.D. 13

VBA in VS Code

Excel files are really zip files with a different extension.

Enable Trust Access to the VBA Project Object Model:

Open Excel.

Go to File > Options.
In the Excel Options window, select Trust Center on the left.

Click on the Trust Center Settings button.

In the Trust Center, select Macro Settings.

Check the box that says Trust access to the VBA project object model.
Click OK to close the Trust Center and then OK to close the Excel Options.

Click on the View tab and then click on the Macros button, create a new macro
called my_first_macro() .

VBA and Python

Juan F. Imbet Ph.D. 14

xlwings

Directly in vs code, open a prompt and type

xlwings vba edit -f hello_world.xlsm

xlwings version: 0.29.1

This will affect the following workbook/folder:

* hello_world.xlsm
* C:\Users\jfimb\Dropbox\jfimbett.github.io\teaching\vba_python

Proceed? [Y/n] y
NOTE: Deleting a VBA module here will also delete it in the VBA editor!
Watching for changes in hello_world.xlsm (silent mode)...(Hit Ctrl-C to stop)

VBA and Python

Juan F. Imbet Ph.D. 15

Do not close excel, keep the macro editor open.

In the file explorer you should see a file called Module1.bas

Edit the file and write the following code:

Attribute VB_Name = "Module1"
Sub my_first_macro()
' Display a message box
 MsgBox "Hello, world!"
End Sub

The first line does not appear in the VBA Editor, but VS Code identifies it.

You still need to run the macro from the Excel file.

VBA and Python

Juan F. Imbet Ph.D. 16

Let's start coding!

VBA and Python

Juan F. Imbet Ph.D. 17

Types

Create a new macro to explote the types in VBA.

Attribute VB_Name = "Module2"
Sub VariableTypesExamplesToTable()
...
End Sub

Code in VBA most times has to be enclosed in a Sub or Function block. Sub stands
for subroutine and Function is used to return a value.

VBA and Python

Juan F. Imbet Ph.D. 18

' Boolean - True or False
Dim isComplete As Boolean
isComplete = True

' Byte - Integer from 0 to 255
Dim byteValue As Byte
byteValue = 255

' Integer - Integer from -32,768 to 32,767
Dim smallNumber As Integer
smallNumber = 12345

' Long - Integer from -2,147,483,648 to 2,147,483,647
Dim largeNumber As Long
largeNumber = 1234567890

VBA and Python

Juan F. Imbet Ph.D. 19

' Single - Single-precision floating-point (approximately -3.4E38 to 3.4E38)
Dim singlePrecisionNumber As Single
singlePrecisionNumber = 1234.56

' Double - Double-precision floating-point (approximately -1.7E308 to 1.7E308)
Dim doublePrecisionNumber As Double
doublePrecisionNumber = 1234567.89

' Currency - Fixed-point with 4 decimal places
' (approximately -922,337,203,685,477.5808 to 922,337,203,685,477.5807)
Dim currencyValue As Currency
currencyValue = 12345.6789

' Decimal - Floating-point number (exact values, used for financial calculations)
Dim decimalValue As Variant
decimalValue = CDec(12345678.1234)

VBA and Python

Juan F. Imbet Ph.D. 20

' Date - Date and time
Dim currentDate As Date
currentDate = Now

' String - Text
Dim name As String
name = "John Doe"

' Variant - Can hold any type of data, default data type if not specified
Dim unknownType As Variant
unknownType = "Can hold any type"

' Object - Can refer to any object
Dim ws As Worksheet
Set ws = ThisWorkbook.Sheets.Add(After:=ThisWorkbook.Sheets(ThisWorkbook.Sheets.Count))
ws.Name = "Variable Types"

VBA and Python

Juan F. Imbet Ph.D. 21

' Range - Special type for referring to Excel ranges
Dim rng As Range
Set rng = ws.Range("A1:A10")

' Array - A collection of variables of the same type
Dim numbersArray(1 To 5) As Integer
numbersArray(1) = 10
numbersArray(2) = 20
numbersArray(3) = 30
numbersArray(4) = 40
numbersArray(5) = 50

' Object - Example with a custom object
Dim dict As Object
Set dict = CreateObject("Scripting.Dictionary")
dict.Add "Key1", "Value1"

VBA and Python

Juan F. Imbet Ph.D. 22

Display the information in a table

' Preparing headers for the table
ws.Cells(1, 1).Value = "Variable Type"
ws.Cells(1, 2).Value = "Variable Name"
ws.Cells(1, 3).Value = "Value"

VBA and Python

Juan F. Imbet Ph.D. 23

Print the information in the table

' Filling in the table with data
ws.Cells(2, 1).Value = "Boolean"
ws.Cells(2, 2).Value = "isComplete"
ws.Cells(2, 3).Value = isComplete

ws.Cells(3, 1).Value = "Byte"
ws.Cells(3, 2).Value = "byteValue"
ws.Cells(3, 3).Value = byteValue

ws.Cells(4, 1).Value = "Integer"
ws.Cells(4, 2).Value = "smallNumber"
ws.Cells(4, 3).Value = smallNumber

ws.Cells(5, 1).Value = "Long"
ws.Cells(5, 2).Value = "largeNumber"
ws.Cells(5, 3).Value = largeNumber

VBA and Python

Juan F. Imbet Ph.D. 24

ws.Cells(6, 1).Value = "Single"
ws.Cells(6, 2).Value = "singlePrecisionNumber"
ws.Cells(6, 3).Value = singlePrecisionNumber

ws.Cells(7, 1).Value = "Double"
ws.Cells(7, 2).Value = "doublePrecisionNumber"
ws.Cells(7, 3).Value = doublePrecisionNumber

ws.Cells(8, 1).Value = "Currency"
ws.Cells(8, 2).Value = "currencyValue"
ws.Cells(8, 3).Value = currencyValue

ws.Cells(9, 1).Value = "Decimal"
ws.Cells(9, 2).Value = "decimalValue"
ws.Cells(9, 3).Value = decimalValue

VBA and Python

Juan F. Imbet Ph.D. 25

ws.Cells(10, 1).Value = "Date"
ws.Cells(10, 2).Value = "currentDate"
ws.Cells(10, 3).Value = currentDate

ws.Cells(11, 1).Value = "String"
ws.Cells(11, 2).Value = "name"
ws.Cells(11, 3).Value = name

ws.Cells(12, 1).Value = "Variant"
ws.Cells(12, 2).Value = "unknownType"
ws.Cells(12, 3).Value = unknownType

ws.Cells(13, 1).Value = "Array (Element 1)"
ws.Cells(13, 2).Value = "numbersArray(1)"
ws.Cells(13, 3).Value = numbersArray(1)

ws.Cells(14, 1).Value = "Object (Dictionary)"
ws.Cells(14, 2).Value = "dict(""Key1"")"
ws.Cells(14, 3).Value = dict("Key1")

VBA and Python

Juan F. Imbet Ph.D. 26

Formatting Ranges (more on this later)

' Formatting the table
With ws.Range("A1:C14")
 .Font.Bold = True
 .Borders.LineStyle = xlContinuous
 .Columns.AutoFit
End With

VBA and Python

Juan F. Imbet Ph.D. 27

Variable Type Variable Name Value

Boolean isComplete TRUE

Byte byteValue 255

Integer smallNumber 12345

Long largeNumber 1234567890

Single singlePrecisionNumber 1234.560059

Double doublePrecisionNumber 1234567.89

Currency currencyValue £12,345.68

Decimal decimalValue 12345678.12

Date currentDate 01/09/2024 18:39

VBA and Python

Juan F. Imbet Ph.D. 28

Communicating with the workbook

You can use the MsgBox function to display a message box to the user.

You can use the InputBox function to get input from the user.

You can use the Cells property of a Worksheet object to read from and write to
cells in a worksheet.

You can access an Excel function using the Application object.

VBA and Python

Juan F. Imbet Ph.D. 29

Simple messages
Sub SimpleMessages()
 MsgBox "This is a simple message box"
 MsgBox "This is a simple message box with a title", vbInformation, "Title"
 MsgBox "This is a simple message box with a title and a Yes/No button", vbYesNo, "Title"
End Sub

What did the user click?

Sub SimpleMessagesUserClick()
 Dim response As VbMsgBoxResult
 response = MsgBox("Do you want to continue?", vbYesNo, "Continue?")
 If response = vbYes Then
 MsgBox "You clicked Yes"
 Else
 MsgBox "You clicked No"
 End If
End Sub

VBA and Python

Juan F. Imbet Ph.D. 30

Retrieve information from the user

Sub RetrieveInformation()
 Dim name As String
 name = InputBox("What is your name?", "Name")
 MsgBox "Hello, " & name
End Sub

Recall that the & operator is used to concatenate strings.

VBA and Python

Juan F. Imbet Ph.D. 31

Retrieve information from an Excel cell

Sub RetrieveInformationFromCell()
 Dim value As Variant
 value = ThisWorkbook.Sheets("Sheet2").Range("A1").Value
 MsgBox "The value in cell A1 is " & value
End Sub

VBA and Python

Juan F. Imbet Ph.D. 32

Write single values to a cell

Sub WriteToCell()
 ThisWorkbook.Sheets("Sheet1").Range("A1").Value = "Hello, world!"
End Sub

Write an array to a range

Sub WriteArrayToRange()
 Dim values As Variant
 values = Array("One", "Two", "Three", "Four", "Five")
 ThisWorkbook.Sheets("Sheet1").Range("A1:A5").Value = Application.Transpose(values)
End Sub

VBA and Python

Juan F. Imbet Ph.D. 33

Use Excel functions

Sub UseExcelFunction()
 ' Initialize an array with values
 Dim valuesArray As Variant
 valuesArray = Array(1, 2, 3, 4, 5)

 ' Loop through the range and assign the array values to the cells
 Dim i As Integer
 For i = 1 To 5
 ThisWorkbook.Sheets("Sheet1").Cells(i, 1).Value = valuesArray(i - 1)
 Next i

 ' Calculate the sum of the range
 Dim result As Variant
 result = Application.WorksheetFunction.Sum(ThisWorkbook.Sheets("Sheet1").Range("A1:A5"))

 ' Display the result in a message box
 MsgBox "The sum of the values in A1:A5 is " & result
End Sub

VBA and Python

Juan F. Imbet Ph.D. 34

Control Flow

Control flow statements allow you to control the flow of execution in your code.
You can use control flow statements to make decisions, loop through code, and
exit code early.

The most common control flow statements are If , ElseIf , Else , For , Do , and
While .

VBA and Python

Juan F. Imbet Ph.D. 35

If Statements

The If statement allows you to execute code conditionally, the If statement is
terminated with an End If statement, the command Then states what happens if
the condition is met.

Sub IfStatement()
 Dim value As Integer
 value = 10

 If value > 5 Then
 MsgBox "The value is greater than 5"
 End If
End Sub

VBA and Python

Juan F. Imbet Ph.D. 36

If Else Statements

The Else statement allows you to execute code if the main condition is not met.

Sub IfElseStatement()
 Dim value As Integer
 value = 3

 If value > 5 Then
 MsgBox "The value is greater than 5"
 Else
 MsgBox "The value is less than or equal to 5"
 End If
End Sub

VBA and Python

Juan F. Imbet Ph.D. 37

Else If Statements

The ElseIf statement allows you to check multiple conditions.

Sub ElseIfStatement()
 Dim value As Integer
 value = 5

 If value > 5 Then
 MsgBox "The value is greater than 5"
 ElseIf value < 5 Then
 MsgBox "The value is less than 5"
 Else
 MsgBox "The value is equal to 5"
 End If
End Sub

VBA and Python

Juan F. Imbet Ph.D. 38

For Loops

The For loop allows you to execute code a specific number of times. It is useful
when you know the number of iterations in advance, as well as when you deal with
arrays.

Sub ForLoop()
 Dim N As Integer
 N = 10
 Dim myArray() As Integer
 ReDim myArray(N)
 Dim i As Integer
 For i = 0 To N - 1
 myArray(i) = i + 1
 Next i
 Dim sum As Integer
 sum = 0
 For i = 0 To N -1
 sum = sum + myArray(i)
 Next i
 MsgBox "The sum of the numbers from 1 to " & N & " is " & sum
End Sub

VBA and Python

Juan F. Imbet Ph.D. 39

While Loops

The While loop allows you to execute code while a condition is true. It is useful
when you do not know the number of iterations in advance.

VBA and Python

Juan F. Imbet Ph.D. 40

Sub WhileLoop()
 Dim N As Integer
 N = 10
 Dim myArray() As Integer
 ReDim myArray(N)
 Dim i As Integer
 i = 0
 While i < N
 myArray(i) = i + 1
 i = i + 1
 Wend
 Dim sum As Integer
 sum = 0
 i = 0
 While i < N
 sum = sum + myArray(i)
 i = i + 1
 Wend
 MsgBox "The sum of the numbers from 1 to " & N & " is " & sum
End Sub

VBA and Python

Juan F. Imbet Ph.D. 41

Stop the execution of a loop in advance

You can use the Exit statement to stop the execution of a loop in advance.

You can specify the environment you want to exit from, for example, Exit For or
Exit While , Exit Function , Exit Sub .

Example, find the first even number in an array.

VBA and Python

Juan F. Imbet Ph.D. 42

Sub ExitLoop()
 Dim N As Integer
 N = 10
 Dim myArray() As Integer
 ReDim myArray(N)
 Dim i As Integer
 For i = 0 To N - 1
 myArray(i) = i + 1
 If myArray(i) Mod 2 = 0 Then
 MsgBox "The first even number is " & myArray(i)
 Exit For
 End If
 Next i
End Sub

VBA and Python

Juan F. Imbet Ph.D. 43

Stop the execution of a function or a subroutine

You can use the Exit statement to stop the execution of a function or a
subroutine in advance.

Determine if a number is prime.

VBA and Python

Juan F. Imbet Ph.D. 44

Functions

Functions are used to return a value.

The Function statement is used to define a function.

The End Function statement is used to terminate a function.

The Function statement is followed by the name of the function and a list of
parameters in parentheses.

The Function statement can also include a return type.

VBA and Python

Juan F. Imbet Ph.D. 45

Return the sum of two numbers

Function AddNumbers(x As Double, y As Double) As Double
 AddNumbers = x + y
End Function

The variable that holds the return value has the same name as the function.

VBA and Python

Juan F. Imbet Ph.D. 46

