Optimization using Solver

Juan F. Imbet *Ph.D.*

Paris Dauphine University - M203 (M1)

Optimization

Notation and Definitions

- **Optimization**: The process of finding the minimum (or maximum) value of a function subject to a set of constraints.
- **Objective function**: The function to be minimized or maximized.
- **Decision variables**: The variables that can be adjusted to optimize the objective \bullet function.
- **Constraints**: The limitations on the decision variables.

Easy **Optimization: Convex Optimization**

Convex Optimization

- **Convex function**: A function that has a non-negative second derivative.
- **Convex set**: A set where the line segment between any two points in the set lies entirely within the set.
- Minimization of a convex function over a convex set is a convex optimization problem. These problems are easy to solve because they have a single global minimum.

Example: Linear Programming

Linear Programming

- **Objective function**: A linear function.
- **Constraints**: Linear inequalities.
- **Decision variables**: Continuous. \bullet
- **Optimization**: Minimize or maximize the objective function.

Linear Programming Problem: Investment Portfolio Optimization

You are managing an investment portfolio and have two options for investment:

- **Investment A**: This is a low-risk investment with a 5% return.
- **Investment B**: This is a higher-risk investment with a 10% return.

Your goal is to maximize the return on your investment, but there are constraints:

- The total amount available to invest is \$100,000.
- You decide that no more than 60% of the total investment should be in the higherrisk investment (Investment B).
- Due to diversification, you want to invest at least \$40,000 in Investment A.

Decision Variables:

Let:

- x_1 be the amount invested in Investment A.
- x_2 be the amount invested in Investment B.

Objective Function (Maximize total return): Maximize $Z = 0.05x_1 + 0.10x_2$

Constraints:

1. Total amount invested:

 $x_1 + x_2 \le 100,000$

2. Limit on investment in higher-risk option:

 $x_2\leq 0.60(x_1+x_2)$

(This simplifies to $x_2 \leq 60,000$.)

3. Minimum investment in Investment A:

 $x_1\geq 40,000$

4. Non-negativity constraints:

 $x_1\geq 0,\quad x_2\geq 0$

Linear Programming Formulation:

Maximize $Z = 0.05x_1 + 0.10x_2$

Subject to:

 $x_1 + x_2 \le 100,000$ $x_2\leq 60,000$ $x_1 \ge 40,000$ $x_1\geq 0, \quad x_2\geq 0$

Juan F. Imbet *Ph.D.* 9

Using Excel's Solver

- Installation: Go to File > Options > Add-ins.
- IN Manage: select Excel Add-ins and click Go . Install Solver Add-in.

Using Excel's Solver

Define the parameters of the model in cells.

Define the objective function and constraints as formulas in Excel.

Optimization using Solver **Solver: Data > Solver**

Optimi**zion straints**

Click Add to add the constraints.

- For bounds $x_1 \geq 0$ and $x_2 \geq 0$, we can use the Non-Negative option in Solver.
- The solving method can be set to Simplex LP (for linear programming problems).

Convex Optimization

- What if we also care about the risk of the investment?
- Volatility asset A: 2%
- Volatility asset B: 5%
- Correlation: 0.85
- Risk aversion: 1.0

The new objective function:

$$
\text{Maximize } Z = 0.05x_1 + 0.10x_2 - \frac{1}{2} \times (0.02^2 \times x_1^2 + \frac{1}{2} \times 0.05^2 \times x_2^2 + 2 \times 0.02 \times 0.05 \times 0.85 \times x_1 \times x_2)
$$

MIP (Mixed-Integer Programming)

- Convex constraints are not enough to represent all real-world problems.
- Many problems require integer or binary decision variables. These variables can represent integer quantities or **binary** decisions that must be made during the optimization.

First Example: Buying Shares

- You can only buy shares in whole numbers. (Although you can pool your money with others to buy a fraction of a share.)
- In the last example, assume company A's shares cost \$10 and company B's shares cost \$20. How would you modify the model?

Maximize $Z = 0.05 \times 10 \times n_1 + 0.10 \times 20 \times n_2$

Subject to:

 $n_1\times 10+n_2\times 20\leq 100,000$ $n_2 \times 20 \le 60,000$ $n_1 \times 10 \ge 40,000$ $n_1 \in \mathbb{N}_+$, $n_2 \in \mathbb{N}_+$

 12 Obj

13 C1

 $\begin{array}{c|c}\n 14 & C2 \\
 \hline\n 15 & C3\n \end{array}$

Second Example: Binary Decision

- Binary decisions are often used in optimization problems where a decision must be made between two options.
- Example: You are a manufacturer and have two options for a new product line: Product A and Product B. You can only choose one of them. How would you model this in an optimization problem?

The KnapSack Problem

- You have a knapsack with a weight limit of 15 kg.
- You have the following items to choose from: A, B, C, D, E, F.
- Each item has a weight and a utility value for you.

E.g., A: 5 kg, 10 value. B: 3 kg, 7 value. C: 4 kg, 8 value. D: 6 kg, 12 value. E: 2 kg, 6 value. F: 7 kg, 14 value.

The KnapSack Problem

- You want to maximize the total value of the items you can carry in your knapsack without exceeding the weight limit.
- How would you model this as an optimization problem?
- Introduce binary decision variables y_i for each item i .

$$
i\in\{A,B,C,D,E,F\}\quad y_i\in\{0,1\}
$$

weights and utility

and w_i v_i

Objective Function:

$$
\textrm{Maximize}~Z = \sum_{i \in \{A,B,C,D,E,F\}} v_i \times y_i
$$

Subject to:

$$
\sum_{i \in \{A,B,C,D,E,F\}} w_i \times y_i \leq 15 \newline y_i \in \{0,1\}
$$

Seat Assignment Problem

- You are organizing a wedding and have to assign seats to attendees. Some attendees have requested to sit next to each other, while others have requested to sit apart (restrictions).
- You think the wedding will be more enjoyable if people with similar interests sit together (preferences).

Seat Assignment Problem

Attendees = $i = 1, \ldots, N$ **Restrictions**

$$
r_{ij} = \left\{ \begin{matrix} 1 & \text{if attendees } i \text{ and } j \text{ must sit together} \\ 0 & \text{otherwise} \end{matrix} \right.
$$

Preferences p_{ij} , the higher the value, the more fun the wedding will be if attendees i and j sit together.

Tables, not everybody can sit together

- You have M tables, each with a capacity of C .
- You want to assign attendees to tables in such a way that the total preference value is maximized.
- Decision variables: $x_{im} = 1$ if attendee i is assigned to table m , 0 otherwise.

Respect the capacity of the tables

$$
\sum_{i=1}^N x_{im} \leq C \quad \forall m
$$

Respect the restrictions

$$
\begin{aligned} x_{im} + x_{jm} &\ge 2 \times r_{ij} \times x_{im} &\forall i,j,m \\ x_{im} + x_{jm} &\ge 2 \times r_{ij} \times x_{jm} &\forall i,j,m \end{aligned}
$$

You can only assign one person to one table

$$
\sum_{m=1}^{M}x_{im}=1 \quad \forall i
$$

Objective Function

$$
\text{Maximize } Z = \sum_{i=1}^N \sum_{j=1}^N \sum_{m=1}^M p_{ij} \times x_{im} \times x_{jm}
$$

What is the problem? The objective function is not linear. We need to linearize it to make it simpler.

Linearization

- Introduce binary decision variables y_{ijm} that are equal to 1 if attendees i and j are assigned to table m , 0 otherwise.
- The objective function becomes:

$$
\textrm{Maximize } Z = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{m=1}^{M} p_{ij} \times y_{ijm}
$$

Linking constraints

• The linking constraints ensure that y_{ijm} is equal to 1 if attendees i and j are assigned to table m .

$$
y_{ijm} \geq x_{im} + x_{jm} - 1 \notag \\ y_{ijm} \leq x_{im}, \; y_{ijm} \leq x_{jm}
$$

Full Model

$$
\begin{aligned} \text{Maximize }Z &= \sum_{i=1}^{N}\sum_{j=1}^{N}\sum_{m=1}^{M}p_{ij}\times y_{ijm} \\ &\sum_{i=1}^{N}x_{im}\leq C \quad \forall m \\ x_{im} + x_{jm} &\geq 2\times r_{ij} \quad \forall i,j,m \\ &\sum_{m=1}^{M}x_{im}=1 \quad \forall i \\ y_{ijm} &\geq x_{im} + x_{jm} - 1 \quad \forall i,j,m \\ y_{ijm} &\leq x_{im},~ y_{ijm} \leq x_{jm} \quad \forall i,j,m \\ x_{im} \in \{0,1\} \quad \forall i,j,m \\ y_{ijm} &\in \{0,1\} \quad \forall i,j,m \end{aligned}
$$

Juan F. Imbet *Ph.D.* 41

See attached Excel file for the modelling of the constraints.

Excel's solver is limited to 200 decision variables and 100 constraints. For larger problems, you can use Python to "pass" the problem to a solver. More on this in the following sessions (project overview).

Using Solver with VBA

Consider the following problem:

$$
\begin{array}{cl} \max & 3x_1 + 2x_2 \\ \text{subject to} & x_1 + x_2 \leq 4 \\ & x_1 - x_2 \leq 1 \\ & x_1, x_2 \geq 0 \end{array}
$$

References to cells in Excel

- In cell $B1$ you will input x_1 .
- In cell $B2$ you will input x_2 .
- In cell $B3$ you will input the objective function $=3*B1+2*B2$.
- In cell B4 you will input the first constraint =B1+B2.
- In cell B5 you will input the second constraint =B1-B2.

Solve it in VBA

```
Sub SolveLinearProgram()
    ' Clear any previous solver settings
    SolverReset
    ' Set the objective: Maximize Z = 3*X1 + 2*X2 (which is in B3)
    SolverOk SetCell:=Range("B3"), MaxMinVal:=1, ValueOf:=0, ByChange:=Range("B1:B2")
    ' Add the constraints:
    ' X1 + X2 <= 4 (which is in B4)
    SolverAdd CellRef:=Range("B4"), Relation:=1, FormulaText:=4
    ' X1 - X2 <= 1 (which is in B5)
    SolverAdd CellRef:=Range("B5"), Relation:=1, FormulaText:=1
    ' X1 > = 0SolverAdd CellRef:=Range("B1"), Relation:=3, FormulaText:=0
    ' X2 > = 0SolverAdd CellRef:=Range("B2"), Relation:=3, FormulaText:=0
    ' Solve the problem
    SolverSolve UserFinish:=True
    ' Keep the Solver solution
    SolverFinish KeepFinal:=1
End Sub
```
Explanation of the code

- SolverReset : Clears any existing solver settings. \bullet
	- SolverOk : Sets the objective function in cell B3 (the formula for Z). The argument MaxMinVal:=1 indicates that we are maximizing the objective. ByChange : Refers to the decision variables x_1 and x_2 in the range B1:B2.
- SolverAdd : Adds constraints. For each constraint, we specify the cell reference, the type of relationship (Relation), and the target value (FormulaText). For example, Relation:=1 corresponds to \leq =, and Relation:=3 corresponds to $>$ =.
- SolverSolve : Solves the linear program, and the argument UserFinish:=True \bullet means the solution will be completed without showing Solver's results dialog.
- SolverFinish : Keeps the solution in place after Solver completes. \bullet